
XTABLES: Bridging
relational technology
and XML

by J. E. Funderburk
G. Kiernan
J. Shanmugasundaram
E. Shekita
C. Wei

XML (Extensible Markup Language) has
emerged as the standard data-exchange
format for Internet-based business
applications. These applications introduce a
new set of data management requirements
involving XML. However, for the foreseeable
future, a significant amount of business data
will continue to be stored in relational
database systems. Thus, a bridge is needed
to satisfy the requirements of these new XML-
based applications while still using relational
database technology. This paper describes
the design and implementation of the XTABLES
middleware system, which we believe
achieves this goal. In particular, XTABLES
provides a general framework to create XML
views of relational data, query XML views,
and store and query XML documents using a
relational database system. Some of the novel
features of the XTABLES architecture are that
it (1) provides users with a single XML query
language for creating and querying XML
views of relational data, (2) executes queries
efficiently by pushing most computation down
to the relational database engine, (3) allows
users to query seamlessly over relational data
and meta-data, and (4) allows users to write
queries that span XML documents and XML
views of relational data.

Internet-based applications promise to dramatically
reduce the cost of doing business by providing an
automated and secure way to exchange data over the
Internet. XML (Extensible Markup Language) has

emerged as the standard data-exchange format for
these applications. This has in turn created a new
set of data management requirements involving XML.
However, for the foreseeable future, most business
data will continue to be stored in relational database
systems. Thus, a bridge is needed to satisfy the re-
quirements of Internet-based XML applications,
while still using relational database technology. This
paper describes the architecture of the XTABLES
middleware system, which we believe achieves this
goal.

One of the features provided by XTABLES is the abil-
ity to create XML views of existing relational data.
XTABLES does this by automatically mapping the
schema and data of the underlying relational data-
base system to a low-level default XML view. Users
can then create application-specific XML views on top
of the default XML view. These application-specific
views are created using XQuery,1 a general-purpose,
declarative XML query language currently being stan-
dardized by the W3C (World Wide Web Consortium).
XTABLES materializes XML views on demand, and
does so efficiently by pushing down most computa-
tion to the underlying relational database engine.

Another feature provided by XTABLES is the ability
to query XML views of relational data. This is im-
portant because users often need only a subset of a
view’s data. Moreover, users often need to synthe-

�Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

FUNDERBURK ET AL. 0018-8670/02/$5.00 © 2002 IBM IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002616

size and extract data from multiple views. In
XTABLES, queries are specified using XQuery, the
same language used to specify XML views. XTABLES
executes queries efficiently by performing XML view
composition so that only the desired relational data
items are materialized.

The final feature provided by XTABLES is the ability
to store and query native XML documents. Users can
query XML documents using the same query language
that they use to create and query XML views of re-
lational data. In addition, users can issue queries that
span XML documents and XML views of relational
data. As a result, users are provided with unified ac-
cess to both relational data and XML documents,
without having to deal with separate databases.
XTABLES stores XML documents by automatically
“shredding” them into rows in tables. Once again,
queries over XML documents are efficiently executed
by pushing most computation down to the relational
database engine.

In summary, XTABLES provides a unified and gen-
eral means to publish XML views of relational data
and to store and query XML documents. Users al-
ways use the same declarative XML query language
(XQuery) regardless of whether they are creating
XML views of relational data, querying XML views,
or querying XML documents. In addition, users can
seamlessly query across XML views of relational data
and XML documents. XTABLES runs as middleware
on top of any relational database management sys-
tem (RDBMS) and leverages the power of the under-
lying relational engine by pushing down most com-
putation to it. The high-level architecture of the
XTABLES system is depicted in Figure 1.

As discussed in the next section, there are other ap-
proaches that provide piecemeal solutions to the
problems addressed by XTABLES. However, we be-
lieve that XTABLES is the first system to tie every-
thing together in a unified framework. As a result

Figure 1 The XTABLES high-level architecture

XTABLES

USER-DEFINED VIEW

• WRITTEN BY USER IN XQUERY

 XML DOCUMENT VIEW

• GENERATED BY XTABLES
 TO RECONSTRUCT DOCUMENT

XQUERY VIEW
DEFINITION

XQUERY VIEW
DEFINITION

XQUERY

DEFAULT MAPPING

RDBMS

 DEFAULT XML VIEW

• GENERATED BY XTABLES
• PROVIDES XML VIEW OF RELATIONAL SCHEMA AND DATA

EXISTING TABLES TABLES FOR STORING
SHREDDED
XML DOCUMENTS

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 617

of its general architecture, XTABLES also provides
the following functionality not seen in other systems:

● XML queries over relational data and meta-data. The
XTABLES default XML view captures both relational
data and meta-data (schema) information. This al-
lows users to write queries (and create views) that
treat relational data and meta-data interchange-
ably. It provides users with a powerful “higher-or-
der” query capability that is needed in certain
applications.2 Because SQL (Structured Query
Language) identifiers are not always acceptable
XML names, a mapping is defined from SQL iden-
tifiers to XML names. Our mapping algorithm fol-
lows the specifications defined in Reference 3.

● Seamless queries across relational data and XML doc-
uments using a relational database system. As men-
tioned earlier, XTABLES supports queries that span
XML views of relational data and XML documents.
This technique is general enough to work with all
existing approaches for storing XML documents us-
ing a relational database system (for example,
those described in References 4–6).

The main contributions of this paper are a high-level
description of XTABLES’s overall architecture, along
with a more detailed description of the two features
noted above. This paper complements References
7 and 8, which focus on individual components of
XTABLES’s query processor in more detail. The re-
mainder of this paper is organized as follows. In the
next section we discuss related work. In the follow-
ing section, we outline our approach to creating and
querying XML views. In the next two sections we de-
scribe meta-data querying and how XML documents
are stored and queried in XTABLES. In the final sec-
tion, we present our conclusions and outline avenues
for future research.

Before proceeding, readers should note that this pa-
per describes the research version of XTABLES, which
previously went by the name of Xperanto.9

Comparison with alternative approaches

As noted earlier, there are other approaches that
provide piecemeal solutions to the problems solved
by XTABLES. In this section, we discuss some of those
approaches and contrast them to XTABLES.

Querying XML documents using an RDBMS. There
have been many approaches proposed for storing and

querying XML documents using relational databas-
es.4–6 Each approach provides a different way to
shred XML documents and store them as rows in ta-
bles. In addition, each approach provides its own
query processor for translating XML queries to SQL
queries. The XTABLES system does not provide yet
another shredding algorithm and its associated query
processor. Rather, XTABLES provides a general
framework that allows the same query processor to
be used irrespective of the shredding algorithm.
XTABLES also supports seamless querying across XML
documents and XML views of relational data.

Querying relational meta-data. XTABLES’s ability to
query relational meta-data is related to work on high-
er-order query languages such as SchemaSQL,2,10–12

which is an extension of SQL. XTABLES’s approach
differs from this work in that an XML query language
is used for querying meta-data. In addition, XTABLES
uses the same query processor for both data and
meta-data. However, there are similarities between
the two approaches with respect to the final SQL que-
ries generated.11 Consequently, one promising di-
rection for future research is to study the effective-
ness of generating SchemaSQL instead of SQL in the
XTABLES middleware layer.

Application programs. One approach for material-
izing an XML view of relational data is to write (or
use a tool such as ODBC2XML** to generate) an ap-
plication program to do the job. The main disadvan-
tage of this approach is that ad hoc queries cannot
be supported over XML views,13 because application
programs have to be written with a fixed set of pa-
rameters. Moreover, views cannot be defined on top
of views in this approach.

XSL-T processors. XSL-T14 processors can be used
to create and query XML views of relational data. In
order to do this, the desired relational data are first
materialized in some interim XML format in which
each row of a table is represented as a separate row
element with the columns’ values as subelements of
a row, and then an XSL-T processor is used to trans-
form the interim format to the desired XML view.
Views over views and queries over views can be pro-
cessed similarly. XTABLES differs from this approach
in three respects. First, because this approach re-
quires relational data to be materialized before XSL-T
processing, selection predicates in queries cannot be
pushed down to the relational engine. Thus, unlike
XTABLES, a large amount of unnecessary data may
have to be materialized. Also, intermediate XML frag-
ments that do not appear in the final query result

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002618

may have to be materialized. This is because, unlike
XTABLES, intermediate views have to be material-
ized. Finally, query processing is less efficient in XSLT
than in XTABLES. This is because XTABLES pushes
most of its computation to a relational database en-
gine, which is likely to be far more powerful than an
XSL-T processor.

SilkRoute. SilkRoute15,16 is a system that allows users
to create and query XML views of relational data.
However, unlike XTABLES, it cannot store or query
XML documents. In SilkRoute, XML views of rela-
tional data are created using a special-purpose query
language called RXL. XML views are then queried us-
ing another language called XML-QL.17 Thus, unlike
XTABLES, SilkRoute’s users need to use different lan-
guages for creating and querying views. Further, its
users need to explicitly straddle the relational and
XML models by using the special-purpose RXL lan-
guage. Also, because SilkRoute does not have the
concept of a default XML view, it cannot support
meta-data queries.

XML database systems. There have been special-
purpose systems built for storing and querying XML
documents.18,19 XTABLES, on the other hand, uses re-
lational databases for storing and querying XML doc-
uments. In addition, XTABLES allows users to pub-
lish existing relational data as XML documents, and
also supports queries that seamlessly span relational
data and XML documents. Although some XML da-
tabase systems may also be capable of executing que-
ries that span XML and relational data, these systems
require the query to be decomposed into a compos-
ite execution plan—one part of the plan is run
against the relational system, and the other against
the XML engine—and the final result to be assem-
bled in the XML database system. XTABLES, on the
other hand, stores XML and relational data using the
same database system, thereby tightly integrating the
query processing over both forms of data.

XML integration systems. The part of XTABLES that
provides the ability to create and query XML views
of relational data can be used as a sophisticated wrap-
per for XML integration systems.20–22 The role of in-
tegration systems is not to store data, but to inte-
grate data coming from disparate sources. Since XML
integration systems do not have any storage capa-
bility, they have to query native XML documents us-
ing an XML run-time engine in their integration layer.
We, on the other hand, focus on storing XML data
and are more aggressive in pushing down compu-
tation, because our focus is on relational systems with

powerful query engines. This makes an order of mag-
nitude difference in performance when constructing
complex XML documents.16,23

Oracle. Oracle’s XSQL24 can also be used to create
XML views of relational data. However, queries over
views are not supported, nor can views be created
on top of views. Oracle also supports the creation
of XML views of relational data using object-rela-
tional technology.25 Nested structures are specified
using objects, which are then mapped to XML. This
approach has the same limitations as XSQL, however.
Oracle also allows XML documents to be stored, and
then queried using SQL with XML extensions. But
these extensions are not comparable in power to an
XML query language such as XQuery. Moreover, they
force application developers to explicitly straddle the
relational and XML models. In contrast, XTABLES
provides a “pure XML” solution for querying XML
documents.

SQL server. Microsoft’s SQL Server26 lets users cre-
ate XML views of relational data using an XDR (XML
data reduced) schema, which is a proprietary XML
schema with relational annotations. Users can query
an XDR-generated view, but in contrast to XTABLES,
a different language (XPath27) is used for queries
than is used for view definition. Moreover, queries
are restricted to XPath expressions, which cannot
support joins. Views on top of views are also not sup-
ported. Finally, there is no way to query XML doc-
uments using an XML query language.

DB2. IBM’s Database 2* (DB2*)28 allows users to cre-
ate XML views of relational data using a proprietary
mapping structure called a DAD (Document Access
Definition), which is similar to IBM’s XLE.29 Users can
invoke the DAD with parameters to materialize an
XML view. However, there is no way to query the DAD
or create XML views on top of the DAD. DB2 can also
store XML documents in character BLOB (binary large
object) columns. However, unlike XTABLES, only lim-
ited query support for XML documents is provided.
Queries are restricted to XPath expressions. Finally,
users cannot query across relational data and XML
documents.

Creating and querying XML views
of relational data

One of the key features of XTABLES is that users can
create and query XML views of relational data using
a standard XML query language, XQuery. We begin
this section by describing how user-defined views are

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 619

created in XTABLES. We then describe how queries
over user-defined views are processed. The main pur-
pose of this section is to help readers understand
XTABLES’s overall architecture. Consequently, only
a high-level description of view and query process-
ing is provided. For more details on those topics,
readers can turn to Reference 7.

The user’s perspective. As a starting point, XTABLES
automatically creates the default XML view, which is
a low-level XML view of the underlying relational da-
tabase. Users can then define their own views on top
of the default view using XQuery. Moreover, views
can be defined on top of views to achieve higher lev-
els of abstraction. The main advantage of this ap-
proach is that a standard, general-purpose XML query
language is used to create and query views. This is
in contrast to approaches15,26,28 in which a proprietary
language is used to define the initial XML view of the
underlying relational database. By using a general-
purpose XML query language, XTABLES gains another
important advantage; it allows arbitrarily complex
views and queries to be expressed. This is in con-
trast to approaches26,28 that provide limited query-
ing capabilities without support for joins and recur-
sion.

Figure 2 illustrates the default view for a simple pur-
chase-order database. The database consists of three

tables, one to track customer orders, a second to
track items associated with an order, and a third to
track the payments due for each order. Items and
payments are related to orders by an order identi-
fier (oid). In the default XML view, top-level elements
correspond to tables, with table names appearing as
tags. Row elements are nested under these. Within
a row element, column names appear as tags and
column values appear as text. Although not shown,
an XML schema30 associated with the default view
captures primary- and foreign-key relationships.

Continuing the example, suppose that a user wants
to publish the purchase-order database as a list of
orders in the XML format shown in Figure 3. There,
each order appears as a top-level element, with its
associated items and payments (ordered by due date)
nested under it. To transform the default view into
the desired XML format, a user-defined view called
“orders” is created, as shown in Figure 4. The view
definition is fairly straightforward. An XQuery FLWR
(for, let, where, return) expression (lines 2–22) is
used to construct each order element. The “for”
clause on line 2 causes the variable $order to be
bound to each “row” element of the order table. The
XPath26 expression appearing in line 2 describes how
to extract each “row” element from the order table:
start at the root of the default view, navigate to each
“order” element nested under it, and then navigate

Figure 2 A purchase order database and its default XML view

<db>
 <order>
 <row> <id>10 </id> <custname> Smith Construction </custname> <custnum> 7734 </custnum> </row>
 <row> <id> 9 </id> <custname> Western Builders </custname> <custnum> 7725 </custnum> </row>
 </order>
 <item>
 <row> <oid> 10 </oid> <desc> generator </desc> <cost> 8000 </cost> </row>
 <row> <oid> 10 </oid> <desc> backhoe </desc> <cost> 24000 </cost> </row>
 </item>
 <payment>
 … (similar to <order> and <item>)
 </payment>
</db>

id custname custnum

10 Smith Construction 7734

9 Western Builders 7725

ORDER

oid desc cost

10 generator 8000

10 backhoe 24000

ITEM

oid due cost

10 1/10/01 20000

10 6/10/01 12000

PAYMENT

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002620

to each “row” element nested under those “order”
elements. The constructor for each new “order” el-
ement is given in lines 4–22. For a given order, nested
FLWR expressions are used to construct its list of as-
sociated items (lines 6–13) and payments (lines 14–
21). The predicate on line 8 ($order/id � $item/oid)

is used to join an order with its items. Similarly, the
predicate on line 16 ($order/id � $payment/oid) is
used to join an order with its payments.

Once the “orders” view has been created, queries
can be issued against it. The following query extracts

Figure 3 XML purchase order

<order>
 <customer> Smith Construction </customer>
 <items>
 <item> <description> generator </description> <cost> 8000 </cost> </item>
 <item> <description> backhoe </description> <cost> 24000 </cost> </item>
 <items>
 <payments>
 <payment due=“1/10/01”> <amount> 20000 </amount> </payment>
 <payment due=“6/10/01”> <amount> 12000 </amount> </payment>
 <payments>
</order>
<order>
 <customer> Western Builders </customer>
 ...
</order>

Figure 4 User-defined XML view

 1. create view orders as (
 2. for $order in view(“default”)/order/row
 3. return
 4. <order>
 5. <customer> $order/custname </customer>
 6. <items>
 7. for $item in view(“default”)/item/row
 8. where $order/id = $item/oid
 9. return
10. <item>
11. <description> $item/desc </description> <cost> $item/cost </cost>
12. </item>
13. </items>
14. <payments>
15. for $payment in view(“default”)/item/row
16. where $order/id = $payment/oid
17. return
18. <payment due=$payment/date>
19. <amount> $payment/amount </amount>
20. </payment> sortby(@due)
21. </payments>
22. </order>
23.)

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 621

a list of “item” elements from the “orders” view for
the customer whose name begins with “Smith.”

FOR $order IN view(“orders”)
LET $items � $order/items
WHERE $order/customer LIKE “Smith%”
RETURN $items

Query processing. In many ways, the heart of
XTABLES is its query processor, which executes
XQuery requests over XML views. One of the key
features of XTABLES’s query processing architecture
is that it can perform view composition, so that only
the desired relational data are materialized. This is
in contrast to an approach such as XSLT,13 where in-
termediate views have to be materialized. XTABLES’s
query processing architecture also allows it to har-
ness the full power of the underlying relational da-
tabase system by pushing most memory- and data-
intensive computation down to the relational engine
(see Reference 7 for a discussion on limitations of
this approach for classes of queries having XML func-
tions that cannot be pushed down to the relational
engine, and possible relaxations of this restriction).

XTABLES’s query processing architecture is shown
in Figure 5. A query is initially parsed and con-
verted from XQuery to an intermediate query rep-
resentation called the XML Query Graph Model
(XQGM). The query is then composed with the XML
views it references, and rewrite optimizations are
performed to eliminate the construction of inter-
mediate XML fragments, unroll recursion, and push
down predicates. In the final step, the modified
XQGM is processed by the computation pushdown
module, which separates the XQGM into two parts.
The first part captures most of the memory- and
data-intensive processing, which gets pushed down
to the relational database engine as a single SQL
query. The second part is a tagger graph structure,
which the tagger run-time module uses to construct
the XQuery result in a single pass over the results
of the SQL query. The result is then returned to the
user. The steps in executing a query are depicted by
the solid lines in Figure 5. Queries over relational
meta-data follow a slightly different execution path,
as illustrated by the dashed lines. A discussion of how
meta-data queries are handled is deferred until the
next section.

Figure 5 Query processing architecture

XQUERY

COMPUTATION PUSHDOWN TAGGER RUN TIME

XQGM

XQGM

XQGM

XQGM XQGM QUERY RESULT

TAGGER GRAPH

RDBMS

THE XTABLES QUERY ENGINE

QUERY RESULT

SQL QUERY TUPLES

XQUERY PARSER

QUERY REWRITE AND
VIEW COMPOSITION META-DATA PROCESSOR

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002622

XQGM consists of a set of operators and functions
that are designed to capture the semantics of an XML
query. Table 1 shows the operators used in XQGM.
As can be seen, the operators are a superset of tra-
ditional relational operators. The select, project, join,
group by, order by, and union operators have the
same semantics as their relational counterparts. The
project operator is used to invoke functions (de-
scribed later) as well as to project relational results.

The table and view operators in XQGM are used to
refer to relational tables and XML view definitions,
respectively. The unnest operator is used to unnest
XML lists. The function operator is used to invoke
XQuery-valued functions represented in XQGM. A
more complete presentation of XQGM can be found
in Reference 7.

To provide a concrete example of how an XQuery
is processed in XTABLES, we turn again to the query
that extracts a list of “item” elements from the “or-
ders” view for the customer whose name begins with
“Smith.” The query is first parsed and converted to
the XQGM shown in Figure 6. For clarity of expo-
sition, variable names appearing in queries are used
in XQGM representations of queries.

The easiest way to read the XQGM is bottom-up. First,
the fact that the query is over the “orders” view is
represented using a view operation (box 1), with the
variable $order bound to each “order” element pro-
duced by the view. The next box selects the order
whose “customer” element begins with “Smith,” and
the final box projects out the list of “item” elements
of that order.

As shown, XQGM is a fairly high-level intermediate
representation. It was designed with flexibility in
mind, thus it can be easily adapted as the XQuery
standard solidifies. Because the goal is to push down
as much computation as possible to the relational
engine, we purposely chose an intermediate repre-
sentation that can be easily translated to SQL. Note
that XQGM borrows from other intermediate repre-
sentations for XML21 as well as SQL.31

After a query is converted to XQGM, it gets composed
with the view it references (in this case “orders”) to
produce an equivalent XQGM that queries directly
over relational tables. This makes it possible to avoid
materializing intermediate views. To eliminate view
references, XTABLES first creates an XQGM for each
referenced view by parsing the XQuery used to de-
fine it. The resulting XQGM graphs are then grafted

in place of their view references. Finally, the mod-
ified XQGM is rewritten to produce an XQGM that
operates directly over relational tables.

Turning back to our example, Figure 7 illustrates the
result of grafting the XQGM for the “orders” view in
place of its reference. Box 1 in Figure 6 has now been
replaced by boxes 1–11 in Figure 7. Focusing on the
left side, and working bottom-up, the correlation on
order.id (box 10) is used to drive the construction
of “item” and “payment” elements (boxes 1–4 and
boxes 6–9, respectively). Next, related orders, items,
and payments are joined (box 10). Then each cus-
tomer name ($custname), list of “item” elements
($items), and list of payment elements ($pmts) pro-
duced by the join is used to construct an “order” el-

Figure 6 The XQGM for a user query

$items

$order

QUERY RESULT

project: $items = $order/items

select: $order/customer like “Smith%”

view: orders

$order

1

2

3

Table 1 XQGM operators

Operator Description

Table Represents a table in a relational database
Project Computes results based on its input
Select Restricts its input
Join Joins two or more inputs
Group by Applies aggregate functions and grouping
Order by Sorts input based on column values
Union Unions two or more inputs
Unnest Applies superscalar functions to input
View Represents a view
Function Represents an XQuery function

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 623

Figure 7 XML view composition

 $items

 project: $items = $order/items

$order

project: $order =
 <order>
 <customer> $custname </customer>
 <items> $items </items>
 <payments> $pmts </payments>
 </order>

 $order

 select: $order/customer like “Smith%”

$custname $items $pmts

join (correlated):

CORRELATION
ON order.id

11

12

13

4

3

$id $custname

table: order5

$id $desc $cost

join: $oid = $id2

$oid $desc $cost

table: item1

$id $due $amt

join: $oid = $id7

$id $due $pmt

project: $prnt = <payment> ...8

$id $pmts

groupby (on $id):
orderby (on $due):
 $pmts = createList($pmt)9

$oid $due $amt

table: payment6

$id $items

groupby (on $id):
 $items = createList($item) 4

3

$id $custname

select:
 $custname like “Smith%”12

$id $desc $cost

join: $oid = $id2

$oid $desc $cost

table: item1

$id $custname

table: order5

10

$id $items

groupby (on $id):
 $items = createList($item)

 $items

10 join (correlated):

$id $items

project: $item = <item> …

$id $items

project: $item = <item> …

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002624

ement (box 11). The remainder of the XQGM (boxes
12–13) is the same as before.

The right side shows what the modified XQGM looks
like after being rewritten. By looking at the XPath
expression in the top-most project (box 13) and how
it maps to the XML constructed for each “order” el-
ement (box 11), the query processor is able to de-
termine that the other blue shaded boxes can be elim-
inated (boxes 6–9 and 11). This is because the XML
they construct (“payment” elements) do not appear
in the query result. Finally, the query processor is
able to determine that the predicate on customer
(box 12) ultimately maps to the “custname” column
of the order table, so it can be pushed down. Al-
though it is not shown, the join is decorrelated be-
fore any SQL is generated.

Recall that in the final steps of query processing, the
computation pushdown module separates the XQGM
into two parts. The first part captures most of the
memory- and data-intensive processing, which is
pushed down to the relational database engine as a
single SQL query. The second part is a tagger graph
structure, which the tagger run-time module uses to
construct the XQuery result from the results of the
SQL query. Space limitations prevent us from discuss-
ing how these final steps in query processing are car-
ried out. More details can be found in Reference 7.
We show here the SQL query produced.

SELECT type, oid, custname, desc, cost
FROM (SELECT 0, order.id, order.custname, null, null

FROM order
WHERE order.custname like “Smith%”
UNION ALL
SELECT 1, order.id, null, item.desc, item.cost
FROM order, item
WHERE order.id � item.oid

) AS (type, oid, custname, desc, cost)
ORDER BY oid, type, due

XTABLES uses the “sorted outer union” technique,
described in Reference 23, which has been shown
to be one of the most efficient and stable strategies
for materializing relational data for the purpose of
constructing XML documents. As shown, the union
has two inputs, one for the order table and the other
for the item table. The result of the union is sorted
by order identifier, type (0 � order, 1 � item), and
due date. This allows the tagger run-time module to
construct the output XML in a single pass over the
SQL result.

Before leaving this section, it is important to note
that although our example query is over a single XML
view, in practice a query can span multiple views in
XTABLES. This is an important capability, because
users often need to synthesize and extract data from
multiple views.

Querying meta-data

One of the key features of XML is that it captures
both data and meta-data. This feature is supported
in XTABLES’s default XML view, which captures both
the data and meta-data (i.e., schema) of the under-
lying relational database. As a result, XTABLES users
can treat relational data and meta-data interchange-
ably. In particular, they can query relational meta-
data as though they were data. This kind of “higher-
order” query capability is especially important in
Internet-based business applications, where multi-
ple XML views of the underlying relational database
may be needed. Since the underlying relational
schema may have been designed independently of
these XML requirements, relational meta-data may
have to be treated as data (and vice versa) in some
XML views.2,11

Unfortunately, higher-order queries are not sup-
ported in standard SQL.10 This creates a problem for
XTABLES, because it must ultimately map XML que-
ries to SQL. To solve this problem, XTABLES imple-
ments a higher-order function, ExecXQuery, in its
query processor. This allows meta-data processing
to be tightly integrated into XTABLES’s query pro-
cessor, allowing the same rewrite and computation
pushdown techniques to be used for both data and
meta-data queries.

In the remainder of this section, we first provide an
example that illustrates the meta-data query prob-
lem. We then describe how meta-data queries are
processed in XTABLES.

An illustrative example. Consider an industrial parts-
supplier database that has the relational schema
shown in Figure 8. The database contains tables that
store information on three types of parts—resistor,
capacitor, and voltmeter. These are stored in sep-
arate tables, because parts can have different columns
depending on their type. For example, resistors have
an “ohms” column, while capacitors have a “farads”
column. In addition to the parts tables, there is also
a category table that specifies the category of each
part type. In our example, the resistor and capacitor
part types appear under the electronic category,

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 625

whereas the voltmeter part type appears under the
test equipment category.

Let us now consider the case where the parts sup-
plier wants to publish information about electronic
parts, using the XML format shown in Figure 9. As
shown, each “part” element has an attribute that
specifies its type. Type-specific information is nested
as subelements.

XTABLES users can easily achieve this task by cre-
ating a user-defined view over the default XML view
of the parts database. Figure 10 shows the default
XML view; the following query creates the user-de-
fined view.

1. �parts�

2. FOR $catrow IN view(“default”)/category/row
3. $table IN view(“default)”/*
4. $part IN $table/row
5. WHERE $catrow/catname � “electronic”

AND $table/tagname� � $catrow/ptype
6. RETURN �part type�$catrow/ptype� $part/* �/part�
7. �/parts�

The query works as follows. It first binds $catrow to
all the “row” elements nested under the category “ta-
ble” element in the default view (line 2). It then se-

lects only those $catrow elements that correspond
to the electronic category (line 5). This is done to
determine the part types that belong to the electronic
category. The query then binds $table to the “table”
elements in the default XML view that correspond
to electronic part types (resistor and capacitor). This
is done by first getting all the table elements (line
3—note that “/*” gets all subelements), and then se-
lecting those table elements that have the same tag
name as one of the electronic part types (line 5).
Once $table is bound to each electronic “table” el-
ement, all its “part” elements are determined (line
4) and the desired XML result is returned.

It is important to note that while XTABLES allows
users to write such queries, SQL systems cannot di-
rectly support them. To see why this is the case, let
us consider what a corresponding SQL query (to fetch
all parts in the electronic category) would have to
do. First, the SQL query would have to select from
the category table to determine electronic part types.
The resulting part types (resistor and capacitor)
would be the names of the tables that belong to the
electronic category. These dynamically determined
tables would then have to be queried to get the ac-
tual parts. This presents a problem for SQL because
table names in an SQL statement cannot be derived

Figure 8 An example relational schema

RESISTOR CAPACITOR

catname

electronic
electronic
test equip.

CATEGORY

ptype

resistor
capacitor
voltmeter

sno

4671
4433

farads

 5mf
 4mf

cost

2.23
5.40

sno

3272
3733

farads

analog
digital

cost

22.00
85.75

VOLTMETER

ohms

 100
 500

cost

3.25
4.75

sno

1270
1763

Figure 9 The desired XML view

 <parts>
 <part type=“resistor”> <sno> 1270 </sno> <ohms> 100 </ohms> <cost> 3.25 </cost> </part>
 <part type=“resistor”> <sno> 1763 </sno> <ohms> 500 </ohms> <cost> 4.75 </cost> </part>
 <part type=“capacitor”> <sno> 4671 </sno> <farads> 5mf </farads> <cost> 2.23 </cost> </part>
 <part type=“capacitor”> <sno> 4433 </sno> <farads> 4mf </farads> <cost> 5.40 </cost> </part>
 </parts>

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002626

from data values, that is, they cannot be the result
of subqueries. Thus, in our example, there is no way
a single SQL query can determine the name of tables
containing electronic parts and then query those ta-
bles.

This example illustrates how “higher order” queries
can be supported in XTABLES. The default view ef-
fectively allows users to query seamlessly across data
and meta-data using XQuery. This is in contrast to
other approaches, which require application devel-
opers to either (1) use nonstandard query languages
such as SchemaSQL,10 or (2) write application pro-
grams that first issue a query to determine the de-
sired table names, and then generate another query
to retrieve the desired data items. The latter ap-
proach effectively moves part of query optimization
into the hands of application developers, because a
nondeclarative program must be written. It also pro-
hibits queries over higher-order views. The next sub-
section describes how meta-data processing is tightly
integrated into XTABLES’s query processor, allowing
the same rewrite and computation pushdown tech-
niques to be used for both data and meta-data que-
ries.

Meta-data query processing. To illustrate how
meta-data query processing takes place in XTABLES,
we turn back to the previous query. The XQGM for
that query is provided in Figure 11. The figure gives
the structure of the XQuery FLWR expression that
is the main part of the example. As shown, electronic
part types are first determined by performing a se-

lection on the category table (boxes 1 and 2). These
are joined with the tag names of “table” elements
in the default view (box 5). The desired “part row”
elements are then unnested from their “table” el-
ement (box 6), and used to produce the result (box
7).

The key feature to note is that the reference to the
default view (box 3) cannot be directly replaced with
references to the appropriate relational tables, as was
done earlier (and also for the category table in box
1). This is because the names of the desired tables
are data-dependent (a result of the join in box 5)
and not known at query compile time.

The XTABLES query processor handles such queries
by representing the default XML view itself as a query
over the relational catalogs (which capture schema
information). This approach has the following two
advantages. First, it allows the same infrastructure
to be used for processing both regular and meta-data
queries. Second, as we shall soon see, it also allows
a large part of the computation for meta-data que-
ries to be pushed down to the relational engine. We
now describe this technique in more detail, starting
with how the default XML view is represented.

Representing the default XML view in XQGM. The
XQGM corresponding to the query for the default
XML view is shown in the right side of Figure 11. This
corresponds to an expansion of boxes 3 and 4. At a
high level, the operation corresponding to box 11
produces a query for each table in the relational da-

Figure 10 The default XML view

 <db>
 <category>
 <row> <catname> electronic </catname> <ptype> resistor </ptype> </row>
 <row> <catname> electronic </catname> <ptype> capacitor </ptype> </row>
 <row> <catname> test equip. </catname> <ptype> volt meter </ptype> </row>
 </category>
 <resistor>
 <row> <sno> 1270 </sno> <ohms> 100 </ohms> <cost> 3.25 </cost> </row>
 <row> <sno> 1763 </sno> <ohms> 500 </ohms> <cost> 4.75 </cost> </row>
 </resistor>
 <capacitor>
 <row> <sno> 4671 </sno> <farads> 5mf </farads> <cost> 2.23 </cost> </row>
 <row> <sno> 4433 </sno> <farads> 4mf </farads> <cost> 5.40 </cost> </row>
 </capacitor>
 …
 </db>

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 627

tabase. Each of these queries, if executed, material-
izes the “row” elements in the default view for the
corresponding table. The top operation in the XQGM
representation (box 12) invokes the higher-order
function ExecXQuery to produce the result of ex-
ecuting each such query. In order to produce the de-
fault view, it then tags the result of the function in-
vocation using the name of the corresponding table.

We now walk through an example to see how the
default view is produced for a single table. First, all
rows are retrieved from the relational catalog table
SYSCAT.COLUMNS. Each row of this table rep-
resents a unique column in the relational database
and includes the name of the column’s table as well
as the name of the column itself. Restricting our at-
tention to the columns of the resistor table, this will

produce the pairs (resistor, sno), (resistor, ohms),
and (resistor, cost). The column names are then
tagged and grouped on the table name (boxes 9, 10,
11) to produce the following query:

FOR $row IN tablerow(resistor)

RETURN �row��sno� $row/sno�/sno� �ohms�

$row/ohms �/ohms��cost� $row/cost �/cost�
�/row�

Here, tablerow is a new XQuery construct to bind
directly over the rows of the specified relational ta-
ble and not its default XML view. This query is then
executed and tagged to produce the default view cor-
responding to the resistor table (box 12).

Figure 11 XQGM for the meta-data query and the default XML view

$ptype $table

join: $ptype = tagname($table)

$ptype

select:
 $catname = “electronic”

$catname $ptype

table: category

2

1

$table

unnest:
 $table = $db/*

$db

view: default

4

3

$table

project: $table =
 <tabname> ExecXQuery($query) </$tabname>

$tabname $query

project: $query =
 “for $row in tablerow(“ + $tabname + ”)” +
 “return” + <row> $querycols </row>

12

11

$tabname $querycols

groupby (on $tabname):
 $querycols = createList($querycol)10

$tabname $querycol

project:
 <$colname> “$row/” + $colname <$colname>9

$tabname $colname

table: SYSCAT.COLUMNS 8

5

$part

project:
 <part type=$ptype> $partrow/* </part> 7

$ptype $partrow

unnest: $partrow = $table/row 6

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002628

By representing the default view in XQGM form, we
have essentially captured the relationship between
meta-data (rows in SYSCAT.COLUMNS) and data
(results of invoking ExecXQuery) within our query-
processing framework (XQGM). Thus, by replacing
references to the default view with the XQGM of the
default view, the interaction between data and meta-
data in the query can be explicitly captured and op-
timized.

Continuing our example, the meta-data-dependent
reference to the default view can be replaced with
the XQGM of the default view to produce the result-
ing XQGM, shown in Figure 12. This grafting also
makes it possible to perform an important optimi-
zation. The meta-data-dependent join on the table
name has been pushed below the invocation of the
ExecXQuery function. (Notice that the join condi-
tion is independent of the result of the ExecXQuery
function. Indeed, the $table variable used in the join
condition in box 5 in Figure 11 is derived from the
$tabname variable in box 12. Therefore, the join con-
dition can simply be moved down through interme-
diate project boxes.) As in view composition, this is
done after removing intermediate XML construction.
By pushing down the join, we are essentially limit-
ing the scope of the ExecXQuery function to exactly
the tables the query actually refers to, that is, the
resistor and capacitor tables. Although not shown
in this example, other optimizations are also possi-
ble, such as pushing down predicates on column
names. The challenge now is to implement the high-
er-order function ExecXQuery. We turn to this is-
sue next.

Implementing ExecXQuery. To understand how Ex-
ecXQuery is implemented, we can draw an analogy
between its invocation and the way that views are
handled in SQL (and in XTABLES). Just as ExecX-
Query logically produces the result of executing its
input query, a reference to a view in SQL logically
produces the result of executing the query used to
define the view. Thus, invocations of ExecXQuery
can be treated just as view references are treated in
SQL. That is, just as references to an SQL view are
replaced by the query used to define the view at query
compilation time, invocations of ExecXQuery can
also be replaced by (the XQGM of) its input query.
The main advantage of grafting the XQGM of the
query, rather than executing the query directly, is the
same as in the case of SQL view composition—in-
termediate results do not have to be materialized.

However, one issue has to be addressed before im-
plementing ExecXQuery in the described manner.
Unlike the query used to define an SQL view, the
query passed as input to ExecXQuery is data-depen-
dent. In our example, we need to determine the ta-
ble names corresponding to electronic part types.
Thus a query has to be first issued to determine the
input query to ExecXQuery. This query is precisely
the subquery represented as XQGM below the invo-
cation of ExecXQuery (left side of Figure 12).

The key observation now is that the XQGM for the
subquery is just like the XQGM for a regular query,
that is, it does not have any higher-order operators.
Therefore, we can recursively invoke the XTABLES
query processor to evaluate this query. The query pro-
cessor can thus perform optimizations, such as push-
ing computation down to the relational engine, for
this subquery. The SQL generated during the eval-
uation of this subquery is

SELECT tabname, colname
FROM category c, SYSCAT.COLUMNS s
WHERE c.catname � “electronic” and c.ptype � s.tabname
ORDER BY tabname

As can be seen, it joins the category table with the
relational catalog table to get the table and column
information for all electronic part tables (resistor and
capacitor in our example). The default view queries
for these tables are then generated, parsed, and
grafted in place of the invocation of ExecXQuery,
as shown in the right side of Figure 12.

It should be noted that one of the key reasons
XTABLES is able to reuse its query-processing infra-
structure for meta-data queries is that relational sys-
tems allow catalog tables (SYSCAT.COLUMNS) to
be queried just like other relational tables. This al-
lows XTABLES to push down computation to the re-
lational engine, even when the query is over rela-
tional catalog tables. Note, however, that just because
relational database systems allow queries over their
catalog tables, this does not imply that they support
seamless querying across relational data and meta-
data. Relational systems cannot use meta-data to
construct and execute a new query “on the fly,” as
is done in XTABLES using ExecXQuery.

Once ExecXQuery is eliminated, the resulting XQGM
does not have any higher-order operators (right side
of Figure 12). Hence, it can be processed like a reg-
ular query. The final SQL query generated by
XTABLES for our example is

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 629

SELECT 0, “resistor”, sno, ohms, cost, null, null, null
FROM resistor
UNION ALL
SELECT 1, “capacitor”, null, null, null, sno, farads, cost
FROM capacitor

The query produces one row for each resistor and
capacitor. These rows are unioned and a type field
(first column) is used to distinguish resistors from
capacitors. The part type information is also present
(second column). As described in the previous sec-

Figure 12 Query processing with ExecXQuery

$part

project:
 <part type=$ptype> $partrow/* </part>

$ptype $query

join: $ptype = $tabname

$ptype

select:
 $catname = “electronic”

$tabname $query

project: $query =
 “for $row in tablerow(… 2

1

$tabname $colname

table: SYSCAT.COLUMNS8

11

$tabname $querycols

groupby (on $tabname):
 $querycols = createList(… 10

$tabname $querycol

project: $querycol =
 <$colname>
 “$row/” + $colname
 </$colname> 9

18

7

13

5

$ptype $partrow

project: $partrow =
 ExecXQuery($query)

$part

project:
 <part type=$ptype> $partrow/* </part>7

“resistor” $partrow

project: $partrow =
 <row>
 <sno> $sno </sno>
 <ohnms> $ohms </ohms>
 <cost> $cost </cost>
 </row> 15 17

$catname $ptype

table: category

$sno $ohms $cost

table: resistor14

$sno $farads $cost

table: capacitor16

“capacitor” $partrow

project: $partrow =
 <row>
 <sno> $sno </sno>
 <farads> $farads </farads>
 <cost> $cost </cost>
 </row>

$ptype $partrow

union:

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002630

tion, this enables XTABLES’s tagger run-time mod-
ule to construct the output XML in a single pass over
the SQL result.

Storing and querying XML documents

In the previous two sections, we described how
XTABLES supports queries over XML views of rela-
tional data. In this section, we describe how XTABLES
allows users to store and query XML documents us-
ing a relational database system. This problem has
received much attention recently,4–6 because it al-
lows sophisticated relational storage and query tech-
nology to be used for XML documents.

Current approaches to storing and querying XML
documents using a relational database system work
as follows. The first step is relational schema gener-
ation, where relational tables are created for the pur-
pose of storing XML documents. The next step is XML
document shredding, where XML documents are
“stored” by shredding them into rows of the tables
that were created in the first step. The final step is
XML query processing, where XML queries over the
“stored” XML documents are converted into SQL que-
ries over the created tables. The SQL query results
are then tagged to produce the desired XML result.

The wealth of literature in this field4–6 makes it clear
that there are many possible approaches for rela-
tional schema generation. This is because the appro-
priate relational schema for a given application de-
pends on many factors, such as the nature of data,
the query workload, and availability of XML schemas.
Currently, each relational schema generation tech-
nique has its own query processor for translating XML
queries into SQL queries.4–6 This is because there is
no existing query processor that can provide a gen-
eral query capability for all relational schema gen-
eration techniques.

The goal of the XTABLES system is not to provide
yet another way to store and query XML documents
using a relational database system. Rather, our goal
is to provide a single query processor that can be used
with all relational schema generation techniques.
That would greatly simplify the task of relational
schema generation by eliminating the need to write
a special-purpose query processor for each new so-
lution to the problem. In XTABLES, this goal is
achieved using the same query processor as the one
used for querying XML views of relational data. Since
the same query processor is used to query XML views
of relational data as well as XML documents,

XTABLES can support queries spanning the two. As
a result, XTABLES’s architecture not only simplifies
the task of relational schema generation, but also
provides new functionality—the ability to seamlessly
query over relational data and XML documents.

The rest of this section is organized as follows. We
first describe XTABLES’s architecture for storing and
querying XML documents. We then walk through two
illustrative examples to show how two very different
approaches to relational schema generation can be
handled using the XTABLES query-processing frame-
work.

XML storage and querying architecture. In
XTABLES, the first step in storing and querying XML
documents is to create an XML document view. XML
documents can then be stored in this view. There-
after, XML document views can be treated just like
regular XML views of relational data. For example,
users can issue queries against XML document views.
In addition, users can write queries that span XML
document views and XML views of relational data.

XTABLES allows users to treat XML document views
just like XML views of relational data because, in-
ternally, XML documents are nothing but XML views
of relational data. Whenever a user creates an XML
document view, XTABLES uses one of possibly many
relational schema generators to automatically cre-
ate relational tables for storing XML documents. XML
documents “stored” in this view are then shredded
and stored as rows in these tables. In addition,
XTABLES generates a reconstruction XML view over
the created relational tables, which (virtually) recon-
structs the “stored” XML documents from the shred-
ded rows. A reconstruction XML view is specified just
like any other XML view of relational data—by us-
ing a query over the default XML view of the created
tables.

A reconstruction XML view makes it possible to treat
an XML document view as though it were an XML
view of relational data. As a result, a query over an
XML document view can be processed as a query over
the reconstruction XML view. This in turn can be han-
dled with the same query processor used for XML
views of relational data. Further, since XTABLES’s
query processor can handle queries over multiple
XML views, it becomes possible to process queries
that span XML views of relational data and XML doc-
ument views. This is shown pictorially in Figure 13.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 631

Recall that, in relational schema generation, tables
are created for the purpose of storing XML docu-
ments. As mentioned earlier, the XTABLES architec-
ture is general enough to support any technique for
relational schema generation. This is possible be-
cause, for a given technique, only a program stub
that does the following is required. When the stub
is invoked (possibly with the schema of the XML doc-
uments to be stored), it

1. Generates the desired relational schema for stor-
ing XML documents

2. Produces an XML shredder object that can take
in XML documents and shred them into rows in
the tables of the generated relational schema

3. Creates a reconstruction XML view over the gen-
erated relational schema that indicates how shred-
ded XML documents are to be (virtually) recon-
structed

It is easy to see from Figure 13 how the above three
components are sufficient to provide a general query
capability over XML documents using any technique
for relational schema generation. It is important to

note that (1) and (2) have to be written, regardless
of whether XTABLES is used. However, in XTABLES,
it is sufficient to just generate a reconstruction XML
view (3) rather than writing a full-blown XML query
processor. The former is probably an order of mag-
nitude easier to accomplish than the latter. As a re-
sult, XTABLES eliminates the need to build a new
query processor for different relational schema gen-
eration techniques.

For the remainder of this section, we walk through
examples to illustrate how the reconstruction XML
view is relatively easy to generate for widely differ-
ent relational schema generation techniques. In or-
der to do this, we use two relational schema gener-
ation techniques published in the literature—one
that uses XML schema information, and one that does
not.

Case Study 1: Relational schema generation using
an XML schema. In this subsection, we show how
the relational schema generation technique proposed
by Shanmugasundaram et al.6 can be integrated with
XTABLES. We briefly describe the proposed tech-

Figure 13 Storing and querying XML documents in XTABLES

XTABLES

STORE XML
DOCUMENTS

STORE ROWS
IN TABLES

RDBMS

TABLES

RELATIONAL
SCHEMA
INFORMATION

QUERY PROCESSOR
FOR XML VIEWS
OF RELATIONAL DATA

CREATE
TABLES

QUERY OVER
TABLES

CREATE XML
DOCUMENT VIEW

QUERY OVER STORED
XML DOCUMENTS

XML VIEW OVER
TABLES TO
RECONSTRUCT
SHREDDED
XML DOCUMENTS

RELATIONAL SCHEMA
GENERATOR

XML DOCUMENT
SHREDDER

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002632

nique and then show how an appropriate reconstruc-
tion XML view can be generated for it in XTABLES.

Relational schema generation and XML document
shredding. The relational schema generation tech-
nique proposed in Reference 6 uses XML schema in-
formation30 to create the appropriate relational ta-
bles. To illustrate how the technique works, consider
an example of an XML document view definition in
XTABLES, as shown in Figure 14. The body of the
view specifies the DTD (Document Type Definition)
of the XML documents to be stored. A description
of the DTD specification is provided for readers un-
familiar with DTDs. The top-level element is called
“PurchaseOrder.” Each purchase order element has
two subelements: “ItemsBought” and “Payments.”
Each purchase order element also has two attributes:
“BuyerName” and “Date.” Each “ItemsBought” el-
ement has zero or more “Item” elements, and each
“Item” element has no subelements but two at-
tributes. “Payments” elements are defined similarly.

Given the DTD information of the XML documents
to be stored, the relational schema generation tech-
nique proposed in Reference 6 works as follows.
First, a structure called the DTD graph, that mirrors
the structure of the DTD, is created. The DTD graph
for our example is shown in Figure 15. As can be
seen, each node in the graph represents an XML el-
ement, an XML attribute, or an “operator.” The “*”
operator is used to identify “set” subelements, that
is, those that can occur many times under a parent
element.

Once the DTD graph is created, it is traversed to con-
struct the desired relational schema. This is done by
creating a relation for the root element of the DTD
graph (“PurchaseOrder” in our example). All chil-

dren of an element are represented in the same re-
lation as the element, except children that are “*”
nodes. Each such child corresponds to a “set” child,
and because regular relations cannot capture set-val-
ued attributes, the child of the “*” node is repre-
sented in a separate relation. Thus separate relations
are created for the “Item” and “Payment” elements
in our example.

The relational schema generated for our example
DTD graph is shown in Figure 16. Note that all re-
lations have an “id” field that serves as the primary
key. In addition, all relations corresponding to non-
root elements (“Item,” “Payment”) also have a “Pa-
rentId” field that is a foreign key reference to its par-
ent “PurchaseOrder.” This is to link a child element
to its parent element. Each relation corresponding
to a nonroot element also has an order field that
specifies the order in which the child elements ap-
pear under the parent element in the XML document.

The XML document shredder also uses the DTD graph
to shred XML documents as rows in the generated
tables. Figure 16 shows the rows obtained by shred-
ding the XML document of Figure 17.

Reconstruction XML view generation. We now show
how the technique described in the previous section
can be integrated with XTABLES by providing an au-
tomatic mechanism to create reconstruction XML
views. Recall that a reconstruction XML view is de-
fined over the tables used to store shredded XML doc-
uments. It is used to reconstruct the original XML
documents. This allows queries over XML documents
to be treated as queries over the reconstruction XML
view.

Figure 14 Creating an XML document view

 Create XML Document View PurchaseOrderView using DTD {
 <!ELEMENT PurchaseOrder (ItemsBought, Payments)>
 <!ATTLIST PurchaseOrder BuyerName CDATA #REQUIRED Date CDATA #REQUIRED>
 <!ELEMENT ItemsBought (Item)*>
 <!ELEMENT Item EMPTY>
 <!ATTLIST Item PartId CDATA #REQUIRED Cost CDATA #REQUIRED>
 <!ELEMENT Payments (Payment)*>
 <!ELEMENT Payment EMPTY>
 <!ATTLIST Payment CreditCard CDATA #REQUIRED ChargeAmt CDATA #REQUIRED>
 }

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 633

Because a reconstruction XML view is an XML view
over relational data, it can be expressed as a
XQuery over the default view. The XQuery de-
fining the reconstruction XML view for our exam-
ple is shown in Figure 18. It reconstructs the XML
document of Figure 17 from the rows in Figure
16. As shown, the query loops over all rows in the

PurchaseOrder table to (re)construct the top-level
“PurchaseOrder” XML elements. Nested queries
are used to (re)construct “Item” and “Payment”
subelements. Note that an “orderby” clause ap-
pears in the nested queries so that the subelements
appear in the same order as they appeared in the
original XML document.

Figure 15 A DTD graph

PurchaseOrder
Type: Element

BuyerName
Type: Attribute

Date
Type: Attribute

ItemsBought
Type: Element

Payments
Type: Element

 *
Type: Operator

 *
Type: Operator

Payment
Type: Element

PartId
Type: Attribute

Cost
Type: Attribute

CreditCard
Type: Attribute

ChargeAmt
Type: Attribute

Item
Type: Element

Figure 16 Generated relational schema

id BuyerName Date

50 Car Corporation 1/1/00

PURCHASE ORDER

FOREIGN KEY TO PRIMARY
KEY RELATIONSHIPS

ITEM

1

2

1

2

50

51

20

21

id ParentId Order PartId Cost

3000

6000

PAYMENT

8342398432

3474324934

1

2

50

51

30

31

 id ParentId Order CreditCardNum ChargeAmt

8000

2000

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002634

Figure 19 presents the algorithm for creating a re-
construction XML view given an arbitrary DTD
graph.32 This algorithm works by recursively travers-
ing the DTD graph, starting with the root node (Pur-
chaseOrder in our example). If a separate relation
has been created for a node in the relational schema,
a new (sub)query is generated. In our example, sep-
arate queries are created for PurchaseOrder, Item,
and Payment nodes. Nested queries are related to
the parent query by joining on the ParentId field.

Note how the algorithm of Figure 19 eliminates the
need for a special-purpose query processor for the
relational schema generation technique proposed in
Reference 6. In fact, using the generated reconstruc-
tion XML view, XTABLES provides a more powerful
and efficient query capability than the query proces-
sor described there.

Case Study 2: Relational schema generation with-
out an XML schema. We now show how a relational
schema generation technique proposed by Florescu
and Kossmann5 can also be integrated with XTABLES.
This technique, unlike the previous one, does not
make use of XML schema information. As a result,
the same reconstruction XML view can be used for
any XML document with this technique. We first
briefly describe the technique, and then show how
reconstruction XML views can be generated over the
generated relational schema.

Relational schema generation and XML document
shredding. The basic idea behind this approach to
relational schema generation is to view an XML doc-
ument as a graph. The nodes of the graph are XML
elements and attributes, and the edges represent con-
tainment relationships.33 Each edge of this graph is

Figure 17 Purchase order XML document

 <PurchaseOrder BuyerName=“Car Corporation” Date=“1/1/00”>
 <ItemsBought>
 <Item PartId=“1” Cost= “3000”/>
 <Item PartId=“2” Cost=“6000”/>
 </ItemsBought>
 <Payments>
 <Payment CreditCardNum=“8342398432” ChargeAmt=“8000”/>
 <Payment CreditCardNum=“3474324934” ChargeAmt=“2000”/>
 </Payments>
 </PurchaseOrder>

Figure 18 A reconstruction XML view

 for $PurchaseOrder in view(“default”)/PurchaseOrder/row
 return
 <PurchaseOrder BuyerName=$PurchaseOrder/BuyerName Date=$PurchaseOrder/Date>
 <ItemsBought>
 for $Item in view(“default”)/Item/row[ParentId = $PurchaseOrder/id]
 return <Item PartId=$Item/PartId Quantity=$Item/Quantity Cost=$Item/Cost/>
 sortby($Item/Order)
 </ItemsBought>
 <Payments>
 for $Payment in view(“default”)/Payment/row[ParentId = $PurchaseOrder/id]
 return <Payment CreditCardNum=$Payment/CreditCardNum ChargeAmt=$Payment/ChargeAmt/>
 sortby($Payment/Order)
 </Payments>
 </PurchaseOrder>

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 635

then stored in a relational table called the Edge ta-
ble. Table 2 shows the Edge table populated with
the edges of the XML document of Figure 17.

As shown, each edge is uniquely identified by the
identifier fields of the source and destination nodes
(the sid and did fields). Each edge also contains the
name, value, and type information about its desti-
nation node. The order among sibling subelements
is captured using the ordinal field. In our example,
the edge pointing to the root XML element (“Pur-
chaseOrder”) is mapped to the first row. Its sid field
is 0, which represents the identifier of the document

root. The edges pointing to the BuyerName and Date
attributes of the “PurchaseOrder” element are
mapped to the second and third row, respectively.
Note that these are related to the purchase order
using the sid field. Similarly, the “ItemsBought” and
“Payments” subelements of a “PurchaseOrder” el-
ement are represented by the fourth and fifth row,
respectively. The ordinal field captures their relative
order. The other edges of the document are stored
similarly.

The reconstruction XML view. Figure 20 shows the
query used to define the reconstruction XML view

Figure 19 Algorithm to generate reconstruction XML view

 Algorithm buildReconstructionQuery (DTDGraphNode node, String parentTableRowVariable) returns Query
 // First identify the type of the DTD Graph node
 if (node is of type Element) then
 // Check whether a separate table is created for this element node
 if (node is stored in separate table from parent) then
 // Create a new FLWR expression that creates a variable that ranges over the rows of the table
 QueryString = “For $” + node.name + “ in view(DefaultView)/” + node.name + “/row”
 // Join on parentId if this is not the root element
 if (not node.isRoot) then
 QueryString += “[parentId = ” + parentTableRowVar + “/Id]”
 endif
 QueryString += “Return”
 currTableRowVariable = “$” + node.name
 else
 // Child is represented in the same table as the parent.
 currTableRowVariable = parentTableRowVariable;
 endif
 // Construct the element template by recursing on the attributes and sub-elements
 QueryString += “<” + node.name + “ ”
 for (all attributes A of node) do
 QueryString += buildReconstructionQuery(A, currTableRowVariable)
 endfor
 QueryString += “>”
 for (all sub-element and operator nodes E of node) do
 QueryString += buildReconstructionQuery(E, currTableRowVariable)
 endfor
 QueryString += “</” + node.name + “>”
 // If this element node is joined with its parent, then sort by the Order field
 if (node stored in separate table from.parent and not node.isRoot) then
 QueryString += “sortby (“ + currTableRowVariable + ”/Order)”
 endif
 else if (node is of type Attribute) then
 // Attributes are always in the same relation as the parent. So, just add attribute name = attribute value
 QueryString = node.name + “ = ” + parentTableRowVariable + “/” + node.name
 else // Node is of type Operator
 // Simply recurse on child
 QueryString = buildReconstructionQuery(node.child, parentTableRowVariable)
 endif
 // Return the query string built
 return QueryString

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002636

for the relational schema generation approach just
described. The query first determines the edge point-
ing to the root element and invokes a function called
“buildElement” to construct the root element (lines
13–15). The buildElement function (lines 1–12) is
recursive and builds up document fragments rooted
at a given element. It first creates an element with
the appropriate tags (line 2). It then produces the
character values associated with an element (line 3).
A nested subquery is then used to determine the
edges pointing to the attributes of the element (lines
4–6), and the attributes are then created using the
XQuery built-in function attribute (line 6). Finally,
another nested subquery is used to determine the
edges pointing to the subelement of the element
(lines 7–8), and these are then created by recursively
invoking the buildElement function (line 9). The sub-
elements are then ordered by their ordinal position
(line 10).

It should be clear that, given this reconstruction XML
view, XTABLES can support queries over XML doc-

uments stored using this technique. Although not dis-
cussed in this paper, XTABLES is able to handle re-
cursive queries, such as the one used in this
reconstruction XML view.7

To summarize, this section describes XTABLES’s ap-
proach to storing and querying XML documents us-
ing a relational database system. It also shows how
any relational schema generation technique for stor-
ing XML documents can be used with XTABLES, and
how its users can seamlessly query across XML views
of relational data and XML documents.

Implementation and performance

We have implemented all of the techniques just de-
scribed as part of the XTABLES middleware system.9

Our implementation is in the Java** language and
uses JDK** (Java Development Kit) 1.2. We use
JDBC** (Java Database Connectivity) as the appli-
cation programming interface to connect to a rela-
tional database system. As a result, our implemen-

Figure 20 The reconstruction XML view

function buildElement ($id integer, $name string, $value string) returns element {
 <$name>
 $value,
 for $att in view(“default”)/Edge/row
 where $att/sid = $id and $att/type = “Attribute”
 return attribute($att/name, $att/value),
 for $subelem in view(“default”)/Edge/row
 where $subelem/sid = $id and $att/type = “Element”
 return buildElement($subelem/did, $subelem/name, $subelem/value)
 sort by $subelem/ordinal
 </$name>
}
for $root in view(“default”)/Edge/row
where $root/sid = 0
return buildElement($root/did, $root/name, $root/value)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

Table 2 The Edge table

sid did ordinal name value type

1 0 0 PurchaseOrder null Element
2 1 null BuyerName Car Corp Attribute
3 1 null Date 1/1/00 Attribute
4 1 0 ItemsBought null Element
5 1 1 Payments null Element
6 4 0 Item null Element
.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 637

tation works on top of most commercial database
systems, including DB2, Oracle, and Microsoft’s SQL
Server.

Based on our implementation, we have evaluated the
performance of our proposed techniques. There are
two factors that characterize the performance of que-
ries in our context. The first is query compilation
time, which consists of the time spent parsing the
query, performing view composition, generating the
SQL query, and setting up the tagger run-time graph.
The second is query execution time, which consists
of the time spent executing the SQL query and tag-
ging the SQL results to produce the output XML doc-
ument. An earlier study23 has evaluated query ex-
ecution performance and has shown the superiority
of the sorted outer-union SQL plans that we gener-
ate. Hence, we focus only on query compilation time
here.

Our experiments were performed using a 366 mega-
hertz Pentium** II processor with 256 megabytes of
main memory running Windows NT** 4.0. We used
DB2 v 7.2 as our database system. We ran XTABLES
and the database system on the same machine to
avoid unpredictable network delays. We considered
queries that accessed up to four XML views. Each
XML view nests three relational tables in a manner
similar to that shown in Figure 4.

The compilation time for our experimental queries
was always less than half a second. For instance, the
compilation time for a query that accessed 12 rela-
tional tables through four XML views was about 450
milliseconds. It takes even less time to compile que-
ries that access fewer views. As a result, there is a
very small compile-time overhead associated with
performing the optimizations proposed in this pa-
per.

It is important to note that this small compile-time
overhead is more than offset by the associated per-
formance gains. This is due to two reasons. First, the
view composition module eliminates the need to ma-
terialize intermediate XML fragments that do not ap-
pear in the final query result. Thus, only the rele-
vant data are fetched from the relational engine. For
typical queries that select only a small subset of data
in an XML view, this results in many orders of mag-
nitude improvement in performance. As a simple ex-
ample, consider an XML view that publishes one mil-
lion available items. If the user wants details on only
one of these items, it is clear that retrieving only the
desired item will be orders of magnitude better than

materializing all one million items and then select-
ing the desired one. This advantage is especially rel-
evant when the underlying relational data changes
often and cannot be easily cached in the middleware
layer.

The other significant performance benefit is due to
the computation pushdown module. By effectively
harnessing the relational engine to process large
parts of XML queries, it eliminates the need for a full-
fledged XML processor in the middleware layer—
only a small, space-efficient tagger run-time mech-
anism is required. This is important, because no
existing native XML query processor has performance
characteristics that are comparable to that of a par-
allel, scalable relational engine.

In the future, we plan to explore other performance
enhancements, such as pushing tagging inside the re-
lational engine, as advocated in Reference 23. The
next section presents more details.

Limitations and possible extensions

We believe that the XTABLES system architecture can
serve as the foundation for providing support for
emerging XML query language features, such as up-
dates.34 We have already made some initial progress
toward this goal by providing the ability to insert XML
documents into a certain class of XML views. How-
ever, the development of a general theory of “up-
datable XML views” is an open research problem. An-
other interesting problem that arises in the context
of XML query languages is support for user-defined
XML functions and predicates. These raise new chal-
lenges because joins (or other memory-intensive op-
erations) involving user-defined XML predicates can-
not be pushed down to a relational engine. It is an
open question as to whether a full-blown XML query
engine is required in the middleware layer to effi-
ciently answer such queries, or whether a relatively
small run-time component that issues many SQL que-
ries is sufficient. For example, consider a query that
joins department and employee XML fragments us-
ing a user-defined XML predicate, such as deptcon-
tains(deptFrag, empFrag). It is important to note
that the join predicate here involves XML fragments,
and is not a predicate on basic data types such as
integers (joins on basic data types can be handled
using our computation pushdown mechanism). The
reason that the join on XML fragments cannot be
pushed down is because the relational engine does
not know about XML fragment construction. A sim-

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002638

ilar problem occurs when trying to order or group
on XML fragments.

One solution is to perform these operations outside
the relational engine, but this requires the duplica-
tion of sophisticated relational functionality, such as
joins and sorts. Another solution, and the one we
advocate, is to add primitives to construct XML doc-
ument fragments inside the relational engine. In this
way, all data- and memory-intensive processing can
be done inside the relational engine. As shown in
earlier work,22 the most efficient way to construct
XML fragments inside the engine is to use the sorted
outer-union query plan. Integrating the computation
pushdown technique with the relational engine so
that these plans can be automatically generated is
an area for future investigation.

Conclusion and future work

The emergence of a new wave of XML-based appli-
cations has imposed new requirements on data man-
agement systems. These requirements include pub-
lishing existing relational data as XML documents,
and storing and querying native XML documents.
This paper describes the design and implementation
of the XTABLES middleware system that harnesses
relational database technology to meet these require-
ments. XTABLES is unique in that it provides users
with a unified, general, and declarative interface.
Specifically, XTABLES exposes relational data as an
XML view and also allows users to view native XML
documents as XML views. Users can then query over
these XML views using a general-purpose, declara-
tive XML query language (XQuery), and they can use
the same query language to create other XML views.
Thus, users of the system always work with a single
query language and can query seamlessly across XML
views of relational data and XML documents. They
can also query relational data and meta-data inter-
changeably. In addition to providing users with a
powerful system that is simple to use, the declara-
tive nature of user queries allows XTABLES to per-
form optimizations, such as view composition and
pushing computation down to the underlying rela-
tional database system.

We believe that the XTABLES system architecture can
serve as the foundation for pursuing various avenues
of future research. One such area is providing sup-
port for emerging XML query language features, such
as updates.34,35 We have made some initial progress
toward this goal by providing the ability to store or
“insert” XML documents into a certain class of XML

views. However, the development of a general the-
ory of “updatable XML views” is an open research
problem. Another interesting problem that arises in
the context of XML query languages is providing sup-
port for information retrieval style queries. These
are especially important for querying native XML doc-
uments.

There are also various optimization possibilities
within the framework of the XTABLES architecture
(in addition to those developed in this paper). For
example, rather than reconstructing the result XML
documents from the base relations every time, rel-
evant fragments of the XML document can be cached.
This optimization gains special significance in the
context of storing native XML documents—if XML
documents are stored as is, in addition to being
shredded into tables, then the relational database
can effectively be used as an index for XML docu-
ments. Other optimization opportunities include
pushing down more functionality, such as tagging,
to “XML-aware” relational databases and using SQL
extensions such as SchemaSQL10 as an alternative
means to support meta-data querying. More gener-
ally, XTABLES can be used as a vehicle to determine
what, and how much of, XML processing can effec-
tively and efficiently be pushed down to a relational
database system.

Acknowledgments

The authors would like to thank Rajasekar Krish-
namurthy, Jeffrey Naughton, Efstratios Viglas, and
Igor Tatarinov for their valuable contributions to the
design and implementation of XTABLES.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Intelligent Systems Re-
search, Sun Microsystems, Inc., Microsoft Corporation, or Intel
Corporation.

Cited references and notes

1. World Wide Web Consortium, XQuery: A Query Language
for XML, W3C Working Draft (February 2000). See http://
www.w3c.org/TR/xquery.

2. R. Miller, “Using Schematically Heterogeneous Structures,”
Proceedings, ACM SIGMOD International Conference on Man-
agement of Data, Seattle, WA (June 2–4, 1998).

3. ISO-ANSI, XML-Related Specifications (SQL/XML),
(ISO-ANSI Working Draft) (June 2001). See http://
www.sqlx.org/.

4. A. Deutsch, M. Fernandez, and D. Suciu, “Storing Semi-Struc-
tured Data with STORED,” Proceedings, ACM SIGMOD In-
ternational Conference on Management of Data, Philadelphia,
PA (June 1–3, 1999).

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 639

5. D. Florescu and D. Kossmann, “Storing and Querying XML
Data Using an RDBMS,” IEEE Data Engineering Bulletin 22,
No. 3, 27–34 (1999).

6. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. De-
witt, and J. Naughton, “Relational Databases for Querying
XML Documents: Limitations and Opportunities,” Proceed-
ings, 25th International Conference on Very Large Databases,
Edinburgh, Scotland (September 7–10, 1999).

7. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and
J. Funderburk, “Querying XML Views of Relational Data,”
Proceedings, 27th International Conference on Very Large Da-
tabases, Rome, Italy (September 11–14, 2001).

8. J. Shanmugasundaram, E. Shekita, J. Kiernan, R. Krish-
namurthy, E. Viglas, J. Naughton, and I. Tatarinov, “A Gen-
eral Technique for Querying XML Documents Using a Re-
lational Database System,” SIGMOD Record 30, No. 3
(September 2001).

9. M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram,
E. Shekita, and S. Subramanion, “XPERANTO: Publishing
Object-Relational Data as XML,” International Workshop on
the Web and Databases (Informal Proceedings), Dallas, TX
(May 18–20, 2000).

10. L. Lakshmanan, F. Sadri, and I. Subramanian, “SchemaSQL—A
Language for Querying and Restructuring Multidatabase Sys-
tems,” Proceedings, 22nd International Conference on Very Large
Databases, Bombay, India (September 3–6, 1996).

11. L. Lakshmanan, S. Sadri, and S. N. Subramanian, “On Ef-
ficiently Implementing SchemaSQL on a SQL Database Sys-
tem,” Proceedings, 25th International Conference on Very Large
Databases, Edinburgh, Scotland (September 7–10, 1999).

12. L. Lakshmanan, F. Sadri, and I. Subramanian, “Sche-
maSQL—A Language for Interoperatability in Relational
Multi-Database Systems,” Proceedings, 22nd International
Conference on Very Large Databases, Bombay, India (Septem-
ber 7–10, 1996), pp. 239–250.

13. For the remainder of this paper, we use the terms “view” and
“XML view” to mean “XML view of relational data” when
the meaning is clear from the context.

14. World Wide Web Consortium, XSL Transformations (XSLT)
Version 1.0, W3C Recommendation (November 1999). See
http://www.w3c.org/TR/xslt.html.

15. M. Fernandez, W. Tan, and D. Suciu, “SilkRoute: Trading
Between Relations and XML,” Proceedings, Eighth Interna-
tional World Wide Web Conference, Toronto, Canada (May
11–14, 1999).

16. M. Fernandez, A. Morishima, and D. Suciu, “Efficient Eval-
uation of XML Middleware Queries,” Proceedings, ACM SIG-
MOD International Conference on Management of Data, Santa
Barbara, CA (May 21–24, 2001).

17. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu, “XML-QL: A Query Language for XML,” Proceed-
ings, Eighth International World Wide Web Conference,
Toronto, Canada (May 11–14, 1999).

18. R. Goldman, J. McHugh, and J. Widom, “From Semi-Struc-
tured Data to XML: Migrating the Lore Data Model and
Query Language,” Proceedings, ACM SIGMOD Workshop on
the Web and Databases, Philadelphia, PA (June 3–4, 1999).

19. J. Naughton et al., “The Niagara Internet Query System,”
unpublished document, available at http://www.cs.wisc.edu/
niagara/Publications.html.

20. C. Baru, A. Gupta, B. Luda�scher, R. Marciano, Y. Papakon-
stantinou, P. Velikhov, and V. Chu, “XML-Based Informa-
tion Mediation with MIX,” Proceedings, ACM SIGMOD In-
ternational Conference on Management of Data, Philadelphia,
PA (June 1–3, 1999).

21. V. Christophides, S. Cluet, and J. Simeon, “On Wrapping
Query Languages and Efficient XML Integration,” Proceed-
ings, ACM SIGMOD International Conference on Manage-
ment of Data, Dallas, TX (May 16–18, 2000).

22. I. Manolescu, D. Florescu, D. Kossmann, F. Xhumari, and
D. Olteanu, “XML and Relational: How to Live with Both,”
Demonstration at the VLDB Conference, Cairo, Egypt (Sep-
tember 10–14, 2000).

23. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lind-
sey, H. Pirahesh, and B. Reinwald, “Efficiently Publishing Re-
lational Data as XML Documents,” Proceedings, 26th Inter-
national Conference on Very Large Databases, Cairo, Egypt
(September 10–14, 2000).

24. Oracle Corporation, http://technet.oracle.com/tech/xml.
25. S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and

R. Murthy, “Oracle8i—The XML Enabled Data Manage-
ment System,” Proceedings, International Conference on Data
Engineering, San Diego, CA (February 26–March 3, 2000).

26. Microsoft Corporation, http://www.microsoft.com/xml.
27. World Wide Web Consortium, XML Path Language (XPath)

Version 1.0, W3C Recommendation (November 1999). See
http://www.w3c.org/TR/xpath.html.

28. J. M. Cheng and J. Xu, “XML and DB2,” Proceedings, In-
ternational Conference on Data Engineering, San Diego, CA
(February 26–March 3, 2000).

29. IBM Corporation, XML Lightweight Extractor, http://
www.alphaworks.ibm.com/tech/xle.

30. World Wide Web Consortium, XML Schema Part 0: Primer,
W3C Recommendation (May 2001). See http://www.
w3.org/TR/xmlschema-0/.

31. H. Pirahesh, J. Hellerstein, and W. Hasan, “Extensible/Rule
Based Query Rewrite Optimization in Starburst,” Proceed-
ings, ACM SIGMOD International Conference on Management
of Data, San Diego, CA (June 2–5, 1992).

32. The algorithm does not handle recursive DTD graphs. Al-
though we have a general algorithm that handles recursion,
we do not present it here, because the details are not par-
ticularly illuminating in the current context.

33. The Florescu and Kossmann paper (Reference 5) does not
distinguish between attributes and subelements. However,
since these are distinguished in the XML model, we treat them
separately.

34. World Wide Web Consortium, XML Query Requirements,
W3C Working Draft (August 2000). See http://www.
w3c.org/TR/xmlquery-req.

35. I. Tatarinov, Z. Ives, A. Halevy, and D. Weld, “Updating XML,”
Proceedings, ACM SIGMOD International Conference on Man-
agement of Data, Santa Barbara, CA (May 21–24, 2001).

Accepted for publication August 8, 2002.

John E. Funderburk IBM Software Group, Silicon Valley Lab-
oratory, 555 Bailey Avenue, San Jose, California 95141 (electronic
mail: jfund@us.ibm.com). Mr. Funderburk is a software devel-
oper at IBM’s Silicon Valley Lab. He previously worked on DB2’s
XML Extender and is currently working on XTABLES.

Gerald Kiernan IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
kiernan@almaden.ibm.com). Dr. Kiernan is a senior software en-
gineer at IBM’s Almaden Research Center. He previously worked
on IBM’s Object Broker, as well as the research version of
XTABLES. He is currently doing research on privacy preserving
databases.

FUNDERBURK ET AL. IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002640

Jayavel Shanmugasundaram Cornell University, Department
of Computer Sciences, Ithaca, New York 14853 (electronic mail:
jai@cs.cornell.edu). Dr. Shanmugasundaram is an assistant pro-
fessor of computer science at Cornell University. He previously
worked on the research version of XTABLES while he was a vis-
iting scientist at IBM’s Almaden Research Center. He is currently
doing research on P2P indexing systems and query processing for
unstructured data.

Eugene Shekita IBM Research Division, Almaden Research Cen-
ter, 650 Harry Road, San Jose, California 95120 (electronic mail:
shekita@almaden.ibm.com). Mr. Shekita is a research staff man-
ager at IBM’s Almaden Research Center. He previously worked
on DB2’s query optimizer, as well as the research version of
XTABLES. He is currently doing research on query processing.

Catalina Wei IBM Software Group, Silicon Valley Laboratory, 555
Bailey Avenue, San Jose, California 95141 (electronic mail:
fancy@us.ibm.com). Ms. Wei is a senior software developer at
IBM’s Silicon Valley Lab. She previously worked on IBM’s Ob-
ject Broker and is currently working on XTABLES.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002 FUNDERBURK ET AL. 641

