
On the Efficiency of Checking Perfect Privacy

Ashwin Machanavajjhala
∗

Department of Computer Science
Cornell University

mvnak@cs.cornell.edu

Johannes Gehrke
Department of Computer Science

Cornell University

johannes@cs.cornell.edu

ABSTRACT
Privacy-preserving query-answering systems answer queries
while provably guaranteeing that sensitive information is
kept secret. One very attractive notion of privacy is per-
fect privacy — a secret is expressed through a query QS ,
and a query QV is answered only if it discloses no informa-
tion about the secret query QS . However, if QS and QV

are arbitrary conjunctive queries, the problem of checking
whether QV discloses any information about QS is known
to be Πp

2-complete.
In this paper, we show that for large interesting subclasses

of conjunctive queries enforcing perfect privacy is tractable.
Instead of giving different arguments for query classes of
varying complexity, we make a connection between perfect
privacy and the problem of checking query containment. We
then use this connection to relate the complexity of enforcing
perfect privacy to the complexity of query containment.

1. INTRODUCTION
The digitization of our daily lives has led to an explo-

sion in the collection of personal data by governments, cor-
porations, and individuals. Such information is stored in
large databases. This has led to easy access to sensitive per-
sonal information, resulting in a dramatic increase in the
disclosure of sensitive information [10]. Hence it is crucial
to design database systems which can limit the disclosure
of private information. To build such a system one has to
answer two fundamental questions – (a) what is the sensi-
tive information that is to be protected? and (b) what is the
extent to which the database should limit the disclosure of
the specified sensitive information? Usually, these two con-
cepts – the specification of the sensitive information and the
privacy guarantee – are encapsulated into a single document
called a privacy policy.

For instance, consider a hospital which maintains patient
records in two relations with schemas shown in Figure 1.

∗Part of the work was done when the author was at IBM
Almaden Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Relation P
PID PName

Relation D
PID Diagnosis Medication

Figure 1: Relational Schema of Hospital Database

Relation P stores patient identifiers and names. Relation
D stores patient identifiers, diagnosis and medication. The
hospital wishes to disclose patient records to a pharmaceu-
tical company in such a way that the pharmaceutical com-
pany cannot infer which patients have which diseases. One
method to formally specify privacy policies is to express sen-
sitive information as conjunctive queries and enforce perfect
privacy [9, 18]. Perfect privacy guarantees that any other
query QV answered by the database will not disclose any
information about the answer to a sensitive query QS . This
ensures that the adversary’s belief about the answer to QS

does not change on observing the answer to the query QV .
In our example, the sensitive information can be expressed
by the following query:

QS(name, diag) :− P (pid, name), D(pid, diag, med).

Perfect privacy has two attractive properties. First, usage
of conjunctive queries enables the policy writer to express
complex privacy policies. For instance, suppose the hospital
is required to release as much data as possible without dis-
closing the names of patients diagnosed with both Hepatitis
and Cancer. The sensitive information in this scenario can
be easily expressed as the following conjunctive query:

QS(name) :− P (pid, name),

D(pid, Hepatitis, b1), D(pid, Cancer, b2).

Second, perfect privacy has the following collusion resistance
property. Consider again a secret query QS , and assume
that there are n adversaries {A1, . . . , An}, where adversary
Ai poses query QVi to the database. Perfect privacy ensures
that each query QVi will be answered only if each query QVi

does not disclose any information about QS . Moreover, per-
fect privacy also ensures that the adversaries cannot learn
any sensitive information by colluding with each other [18].
This collusion-resistance is crucial for efficient query answer-
ing when the database answers queries interactively instead
of publishing views. When enforcing perfect privacy, the
database does not need to keep track of all queries ever an-
swered in order to guarantee that future query answers can-
not be combined with old query answers to disclose informa-
tion [13]. However, these nice properties of perfect privacy
do not come for free. The problem of checking whether a

conjunctive query QV discloses any information about an-
other conjunctive query QS is Πp

2-complete [18], even when
the conjunctive queries have only equality comparisons.

In this paper, we show that there are interesting sub-
classes of queries for which enforcing perfect privacy is tractable
(i.e., there is an algorithm which runs in time polynomial in
the size of the two queries QS and QV). We first propose an
alternate characterization of perfect privacy in terms of the
well studied notion of query containment. We exploit this
connection between perfect privacy and query containment
to identify many subclasses of conjunctive queries (described
in Figure 3) where checking perfect privacy is tractable.

The rest of the paper is organized as follows. In Section
2, we introduce notation and give intuition behind the ideas
in the paper. Section 3 gives an alternative characterization
of critical tuples, a core property of perfect privacy. We use
this new characterization to connect perfect privacy with
query containment in Section 4. In Section 5 we use this
connection to prove tractability results for checking perfect
privacy for different query classes. We discuss related work
in Section 6 and then conclude in Section 7.

2. OVERVIEW

2.1 Preliminaries
We start with some basic notation following [18].

Relations and Queries: A relation R consists of a relation
schema R(A1, . . . , Ar) and an associated relation instance
which is a finite two-dimensional table with r columns; we
call r the arity of relation R. The columns are called at-
tributes and the rows are called tuples. Attribute Ai has
domain D(Ai). We define DR as the domain of tuples in
the relation R, i.e., DR = D(A1) × . . . × D(Ar). We as-
sume that all the domains are finite. Each tuple t in the
relation is an element (c1, . . . , cr) ∈ DR and is denoted by
t = R(c1, . . . , cr); we call R the relational symbol of t. We
denote by t[Ai] or short t[i] the value of attribute Ai in tuple
t.

A database schema S is a finite set of relational schemas
{R1, . . . , Rm}. Tup(S) denotes the set of all tuples over all
relations in the schema that can be formed from the con-
stants in the respective domains. A database instance I is
a subset of Tup(S) and let I denote the set of all database
instances. We henceforth use Tup(I) to mean Tup(S). We
assume that the only constraints on the database are key
constraints. A key of a relation R is a minimal set of at-
tributesA such that for every two tuples t1, t2 ∈ DR, t1[A] =
t2[A] ⇒ t1 = t2. Let IK denote the set of all possible
database instances satisfying the key constraints in K. Let
KR denote the set of key constraints on relation R.

A conjunctive query with inequalities Q has the form

Q(a1, a2, . . . , am) :− G1 ∧G2 ∧ . . . ∧Gn ∧ CQ;

where CQ is a set of inequality constraints.
We call G` a subgoal, Q(a1, a2, . . . , an) the goal. Each sub-

goal G` is of the form R`(x1, x2, . . . , xk`), where R` is a re-
lation. Similar to a tuple, we call R` the relational symbol of
subgoal G`. Each xi = G`[i] is either a constant in D(R`.Ai)
or a variable ranging over D(R`.Ai). Note that while each
field in a tuple is a constant, a field in a subgoal can be a
variable. Each ai in the goal is either a variable appearing
in one of the subgoals, or a constant in the domain of one
of the attributes of a relation appearing in the query. We

denote the set of variables appearing in the goal by AQ and
we also refer to it as the set of distinguished variables. The
set of variables which appear in the subgoals but not in the
goal is denoted by BQ and called the set of non-distinguished
variables. Let KQ denote the set of all constants appearing
in the query. We abuse the notation Q to also denote the set
of subgoals in Q; i.e., Q = {G1, G2, . . . , Gn}. The inequal-
ity constraints in the set CQ are of the form xiθxj , where
θ ∈ {≤, <,≥, >, 6=}, xi is a variable in AQ ∪ BQ and xj is
either a variable in AQ ∪ BQ or a constant in the domain
that xi ranges over.

Semantically, a query is a function from database instances
to relation instances. We define the output of a query on
a database instance using the idea of a valuation. A valua-
tion ρ on a conjunctive query Q is a function that maps
variables in AQ ∪ BQ to constants in the respective do-
mains and the identity function for constants in KQ. A
constraint preserving valuation ρ on Q is a valuation such
that (xi θ xj) ∈ CQ ⇒ ρ(xi) θ ρ(xj). Unless otherwise spec-
ified, all valuations in the remainder of the paper are con-
straint preserving. A subgoal is said to be compatible with a
tuple t if the subgoal and the tuple have the same relational
symbol and there is a valuation |rho mapping the subgoal
to t. A set of subgoals {G1, . . . Gn} is compatible if there is
a tuple t that ∀i∃ρ : ρ is a valuation mapping Gi to t.

Given a conjunctive query with inequalities Q and a data-
base instance I, a tuple to = Q(c1, c2, . . . , cm) is said to be
in the output of Q(I) if there is a valuation ρ such that
ρ(ai) = ci, i.e., each distinguished variable ai is mapped
to a constant ci; and ρ(R(x1, . . . , xr)) ∈ I, i.e., subgoal
R(x1, . . . , xr) is mapped to one of the tuples in relation in-
stance R of the database instance I.
Query Containment: Query Q1 is said to be contained
in query Q2 on the set of databases in I and is denoted by
Q1 ⊆ Q2, if

∀I ∈ I, Q1(I) ⊆ Q2(I).

Throughout the paper, we use the term conjunctive query
to denote a conjunctive query without inequalities, unless
otherwise specified.
Perfect Privacy [18]: We give a quick recap of the ba-
sic notions of perfect privacy from Miklau et al. [18]. Let
P be a probability distribution over all the possible tuples
P : Tup(I) → [0, 1], where P(t) = p denotes the probability
that tuple t will occur in a database instance. Miklau et
al. call the pair (Tup(I),P) a dictionary. Let P[QS = s]
denote the probability that the query QS outputs s. Then
query QS is perfectly private with respect to QV if for ev-
ery probability distribution and for all answers s, v to the
queries QS , QV respectively,

P[QS = s] = P[QS = s |QV = v].

In other words, the query QS is perfectly private with re-
spect to QV if the adversary’s belief about the answer to QS

does not change even after seeing the answer to QV .
When the only constraints in the database are key con-

straints, the above condition can be rephrased in terms of
critical tuples. A tuple t is critical to a query Q, denoted by
t ∈ crit(Q), if ∃I ∈ I, Q(I ∪ {t}) 6= Q(I). Let us now state
one of the main results from Miklau et al. [18].

Theorem 2.1 (Perfect Privacy [18]). Let (Tup(I),P)
be a dictionary. Two queries QS and QV are perfectly pri-

Relation P
PID PName
123 John
135 Daisy
146 Chris

Relation D
PID Diagnosis Medication
123 Hepatitis RX1
135 Cancer RX2
135 Hepatitis RX1

Figure 2: A database instance I ∈ I

vate with respect to each other if

crit(QS) ∩ crit(QV) = ∅.

Let K = {A1, . . . ,Am} be a set of key constraints over the
relations involved in QV and QS. Then Query QV and QS

are perfectly private with respect to each other if

∀tS ∈ crit(QS), tV ∈ crit(QV),∀Ai ∈ K, tS [Ai] 6= tV [Ai].

Miklau et al. also proved the following complexity result.

Theorem 2.2 (Intractability of Perfect Privacy[18]).
The problem of checking whether a query QV is perfectly pri-
vate with respect to query QS is Πp

2-complete.

2.2 Intuition
In this section we provide some intuition behind the rest

of the paper. We are interested in identifying subclasses of
conjunctive queries which allow specification of interesting
privacy policies while permitting tractable enforcement of
perfect privacy. We first take a very simple class of queries
– queries without self-joins – and illustrate that enforcing
perfect privacy is indeed tractable (Section 2.2.1). In order
to determine the complexity of other query classes, we could
have laboriously enumerated every interesting query class
and investigated the hardness of checking perfect privacy
for queries in that class. Instead, we show a connection
between the problem of checking perfect privacy and the
problem of query containment (Section 2.2.2). We use this
connection and the vast literature in query containment to
identify interesting query classes (Section 2.2.3).

2.2.1 A Simple Tractable Case

Example 2.1. Consider the hospital database from Fig-
ure 1. Let the sensitive information be specified by the fol-
lowing query QS:

QS(name) :− P (pid, name), D(pid, Cancer, b1)

Query QS has no self joins, i.e., no two subgoals have the
same relational symbol. Which tuples in the domain of re-
lation D are critical to this query? Clearly, any tuple t
having the diagnosis attribute valued Cancer, for example
t = D(123, Cancer, RX2), is critical to QS. In particular,
for t = D(123, Cancer, RX2), the instance I in Figure 2 is
such that QS(I ∪ {t}) 6= QS(I). Also, it is easy to see that
any tuple not having Cancer as the value for the diagnosis
attribute, such as t′ = D(123, Hepatitis, RX1), is not critical
to QS. For any instance I ′ ∈ I, adding the tuple t′ will
not lead to a new output tuple being created since t′ is not
compatible with any subgoal. Hence, a tuple in the domain
of relation D is critical to QS if and only if the value for the
diagnosis attribute is Cancer.

As illustrated in this example, if QS has no self-joins, a
tuple t is critical to QS if and only if t is compatible with
some subgoal in QS . Using this simple check for critical
tuples, the condition for perfect privacy can be simplified as
follows. Queries QS and QV , both without self-joins, share
a critical tuple if and only if there are subgoals GS ∈ QS

and GV ∈ QV both of which are compatible with some
common tuple t ∈ DR. Recall that subgoals are compatible
if they have the same relation symbol and the subgoals do
not have differing constants for any attribute. Checking this
condition is linear in the size of the queries and hence the
problem is tractable.

2.2.2 Connecting Privacy and Query Containment
Let us now give an intuition behind our alternate charac-

terization of perfect privacy. Suppose a tuple t is critical to
Q. By definition, there is some database instance I, such
that Q(I ∪ {t}) 6= Q(I). Since Q is a conjunctive query, it
is monotone, i.e., Q(I) ⊆ Q(I ∪ {t}). Therefore, there is an
output tuple to, such that to ∈ Q(I ∪ {t}) and to 6∈ Q(I).
Consider a valuation ρ on Q which creates this output tuple
to ∈ Q(I∪{t}). Recall that ρ should map Q’s goal to to and
the subgoals in Q to tuples in (I ∪ {t}). Since, to 6∈ Q(I),
ρ cannot map all the subgoals in Q to tuples in I. Hence,
ρ should map some set of subgoals from Q, say G, to the
critical tuple t.

Consider a query Q′ which is constructed from Q by re-
placing all of the variables xi appearing in Q by ρ(xi). Since
a valuation is an identity function on constants, ρ is still a
valuation from Q′ to (I ∪ {t}) which outputs the tuple to.
So we still have to ∈ Q′(I ∪ {t}) and to 6∈ Q(I).

Remove from Q′ the subgoals in G. Call this new query
Q|(G,t) (see Section 3 for a formal definition). The valuation
ρ now maps all the subgoals in Q|(G,t) to I and the goal of
Q|(G,t) to to. Thus we have, to ∈ Q|(G,t)(I) and to 6∈ Q(I);
i.e., Q|(G,t) 6⊆ Q. This gives the following condition:

t ∈ crit(Q) ⇒ ∃G compatible with t, Q|(G,t) 6⊆ Q (1)

Interestingly, whenever G is a set of subgoals compatible
with t, the query Q|(G,t) is such that Q|(G,t)(I) ⊆ Q(I ∪{t})
(see Section 3). This is because any valuation ρ from Q|(G,t)

to I can be extended to a valuation ρ′ from Q to (I ∪ {t}),
where the subgoals in G are mapped to t and the other
subgoals are mapped to tuples in I as in ρ.

When t is not critical to Q, for every instance I, Q(I ∪
{t}) = Q(I). Hence, for every instance I, Q|(G,t)(I) ⊆ Q(I).
This gives us the condition

t 6∈ crit(Q) ⇒ ∀G compatible with t, Q|(G,t) ⊆ Q (2)

Using Statements 1 and 2, we can now characterize the
perfect privacy condition using query containment:

QV is perfectly private wrt QS

⇔ crit(QV) ∩ crit(QS) = ∅
⇔ ∀t ∈ Tup(I), t 6∈ crit(QV) ∨ t 6∈ crit(QS)

⇔ ∀t ∈ Tup(I),∀GS ,GV compatible with t,

QS |(GS ,t) ⊆ QS ∨QV |(GV ,t) ⊆ QV

Our final goal is to identify cases when the above check is
tractable. This will, however, not be easy as long as the
condition has a universal quantifier over all the tuples in
the table. We show that when attributes have sufficiently
large domains, the universal quantifier over the domain of

Query Class Efficiency Query Class Description

Queries where each subgoal is associated with a unique relation symbolQueries with
O(nr) Example: Q(a1, a2) :−R(a1, b1, b2), S(a2, b2, b1), T (a1, b3, b1)no self-joins

Complexity of Q ⊆ Q′ : O(nr), where Q has no self joins
Query Q represented as tableau. Each variable appears only in one

Maximal column. No two rows r1, r2 sharing the same relation symbol are s.t.
Row O(n2r) ∀i, r1[i] = c ⇒ r2[i] = c, for all c ∈ KQ

Tableaux Example: Q(a1, a2) :−R(a1, b1, 0), R(a2, b2, 1), T (2, b2, b3)
Complexity of Q ⊆ Q′: NP-complete
Queries with at most one self-join per relation

Queries with
O(n3r) Example: Q(a1, a2) :−R(a1, b1, b2), R(a2, b1, b3), S(a1, b2, b3), S(a2, b1, b3)

k ≤ 1
Complexity of Q ⊆ Q′ : O(n2r); Q has at most 1 self join [20]
Query Q represented as tableau. Each variable appears only in one column. Each column

Simple O(m22k· containing a repeated non-distinguished variable bi contains no other repeated symbol.
Tableaux n3r2) Example: Q(a1, a2) :−R(a1, b2, b3), R(a2, b2, b4), R(a1, b′2, b3), R(a2, b′′2 , b5)

Complexity of Q ⊆ Q′ : O(n3r2), where, Q1, Q2 are simple tableaux queries [2]
The hypergraph constructed using the variables in the query Q as nodes and subgoals in

Acyclic O(m22k· the query as (hyper-)edges is acyclic.
Queries rn2 log n) Example: Q(a1, a2) :−R(a1, b2, b3), R(a2, b3, b4), R(a1, b5, b6)

Complexity of Q ⊆ Q′ : O(rn2 log n), where, Q is acyclic [7].
Queries The hypergraph constructed using the variables in the query Q as nodes and subgoals in the

with O(m22k· query as (hyper-)edges has a query-width bounded by c.
Bounded rc2nc+1 log n) Example (c = 2): Q(a1, a2) :−R(a1, b3, b1), R(a2, b4, b1), R(a1, b5, b2), R(a2, b6, b2)

Query-Width Complexity of Q ⊆ Q′ : O(crnc+1 log n), where Q has bounded tree-width [7]

Figure 3: Tractable Perfect Privacy

tuples can be eliminated. Given a set of subgoals G, let G be
a subgoal such that every tuple compatible with G is also
compatible with G. Let Q|(G,G) be constructed analogous
to Q|(G,t). We show, in Section 4, that if Q|(G,G) 6⊆ Q,
then some tuple compatible with G is critical to Q. Using
this property, we provide an alternate characterization for
perfect privacy as follows: A query QV does not disclose
any information about QS if and only if for every set of
compatible subgoals GS in QS and GV in QV :

QS |(GS ,G?) ⊆ QS ∨QV |(GV ,G?) ⊆ QV ,

where G? is the most general unifier of the subgoals in GS ∪
GV (see Section 4).

2.2.3 Using the Connection
We can draw three key insights from this alternate defi-

nition. First, it is now intuitively clear why the problem of
enforcing perfect privacy is in Πp

2. For every set of compat-
ible subgoals (universal quantification over a finite number
of choices) we need to perform a query containment check
(which is in NP for conjunctive queries [5] and is in Πp

2

when queries have inequalities [23]). Next, we observe that
if the maximum number of subgoals in a query which share
the same relational symbol is bounded by a constant (al-
ternately, the number of self-joins per relation is bounded),
then the problem of enforcing perfect privacy is only as hard
as performing a constant number of containment checks. Fi-
nally, the query containments we are required to check are
not between two arbitrarily complex queries, and we can use
their structure to propose efficient algorithms for enforcing
perfect privacy even for query subclasses where tractability
of query containment is not known.

Figure 3 enumerates our complexity results. The first col-
umn enumerates the subclasses of conjunctive queries where
perfect privacy can be enforced in time polynomial in the
size of the queries. The second column gives the bound on

n Total number of subgoals: n = |QS |+ |QV |
m Number of relations appearing in QS and QV

r Max arity of relation appearing in QS and QV

k Max number of self-joins per relation in either query

Figure 4: Size of instance (QS, QV)

the time required to enforce perfect privacy when QS and
QV are from the specified query class; Figure 4 explains our
notation. Notice that the case of queries without self-joins
is actually a special case of our framework. For maximal
row tableaux, a subclass of tableaux queries, query contain-
ment is intractable. However, since the query containments
we check are of a special form, we show that perfect privacy
in this scenario can be enforced with a very simple algo-
rithm. Tractability of the rest of the query classes leverage
tractability results for query containment [2, 20, 7]. When
QS and QV are from different classes, the tractability result
for the less efficient query class holds.

3. CRITICAL TUPLES
In this section we propose an alternate characterization of

critical tuples for conjunctive queries in terms of query con-
tainment. In order to state the alternate characterization,
we first need to describe how to construct Q|(G,t) from a con-
junctive query Q, a set of compatible subgoals G in Q, and a
tuple t which is compatible with all the subgoals in G. The
construct Q|(G,t) has interesting properties (Lemmas 3.1 and
3.2) which we will exploit in the rest of the paper. Finally,
we recharacterize the critical tuple condition for conjunctive
queries in terms of query containment (Theorem 3.1).

Denote by Q − G the query constucted by removing all
the subgoals in G from the query Q. Denote by Q|(G,t) the
query ρt(Q−G), where ρt is a partial valuation which maps
the variables appearing in subgoals in G to corresponding

constants in tuple t, and is the identity function for all other
variables in the query Q − G. Formally ρt is defined as
follows: Let VQ denote the variables appearing in Q, and VG
denote the set of variable appearing in G. Let K denote the
set of all constants. Then, ρt is a function ρt : K ∪ VQ →
K ∪ (VQ − VG) such that,

ρt(xi) =

�
t[j], if G[j] = xi, for some G ∈ GS ∪ GV

xi, otherwise

Q|(G,t) has the following two properties.

Lemma 3.1. Let Q be a conjunctive query and t be a tu-
ple. For every set of subgoals G in Q which are compatible
with t,

∀I, Q|(G,t)(I) ⊆ Q(I ∪ {t}).

Lemma 3.2. Let Q be a conjunctive query, t a tuple and
I a database instance. Let ρ be a valuation mapping the
subgoals in Q to tuples in (I ∪ {t}). Let G be the set of
subgoals in Q mapped to t under ρ. If ρ maps the goal of Q
to to, then to ∈ Q|(G,t)(I).

We can now state our alternate characterization of critical
tuples in terms of query containment.

Theorem 3.1. A tuple t is critical to a conjunctive query
Q if and only if there is some set of subgoals G in Q which
are compatible with t, such that Q|(G,t) 6⊆ Q.

4. PERFECT PRIVACY
In this section, we give an alternative characterization of

perfect privacy in terms of query containment. In particu-
lar, we use our new characterization of critical tuples to give
a novel characterization of perfect privacy in terms of query
containment. Our new characterization, however, involves a
universal quantifier over all the tuples in the domain, mak-
ing this characterization very expensive to check. The major
technical contribution of this section is to eliminate this uni-
versal quantification over all tuples (Theorem 4.2).

We first discuss the case where in every database instance
in I the tuples are independent of each other (Section 4.1).
We also discuss the scenario with key constraints (Section 4.2).

4.1 Perfect Privacy with Independent Tuples
In the case when the tuples are independent of each other,

a query QV does not disclose any information about the
query QS if and only if no tuple is critical to both QS and
QV [18]. Hence, given our novel characterization for critical
tuples (Theorem 3.1), perfect privacy can be rephrased as

Theorem 4.1. A conjunctive query QV does not disclose
any information about another conjunctive query QS if and
only if for every tuple t ∈ Tup(I), and for every set of
subgoals GS in QS and GV in QV where all the subgoals in
GS ∪ GV are compatible with t,

QS |(GS ,t) ⊆ QS ∨QV |(GV ,t) ⊆ QV .

Consider an algorithm which naively implements the above
condition for perfect privacy (see Algorithm 1). There are
three steps which would make such an algorithm intractable.

• H1: for every tuple t ∈ Tup(I) (Line 2).

• H2: for every set of subgoals GS in QS and GV in QV

which are compatible with t (Line 4).

Algorithm 1 Perfect Privacy (naive).

Input: Conjunctive Queries QS and QV .
Output: Whether QS and QV share a critical tuple.
1: //for every tuple in the domain
2: for all tuples t ∈ Tup(I) do
3: //for every set of subgoals in the query
4: for all GS ⊆ QS , GV ⊆ QV having the same relational

symbol as t do
5: if GS ∪ GV is compatible with the tuple t then
6: //consider the partial valuation ρt mapping the

//subgoals in GS ∪ GV to the tuple t
7: ρt : AQ ∪BQ → AQ ∪BQ ∪KQ such that

ρt(xi) =

�
t[j], if G[j] = xi, for some G ∈ GS ∪ GV

xi, otherwise

8: QS |(GS ,t) = ρt(QS −GS), QV |(GV ,t) = ρt(QV −GV).

9: if
�
QS |(GS ,t) 6⊆ QS AND QV |(GV ,t) 6⊆ QV

�
then

10: return QS and QV SHARE a critical tuple.
11: end if
12: end if
13: end for
14: end for

15: return QS and QV do NOT SHARE a critical tuple.

• H3: Checking whether QS |(GS ,t) ⊆ QS OR
QV |(GV ,t) ⊆ QV (Line 9).

To identify query classes for which Algorithm 1 is tractable,
each of the above three steps should be tractable.
Step H3: First, given sets of subgoals GS and GV which are
compatible with a tuple t, constructing the queries QS |(GS ,t)

and QV |(GV ,t) is at most linear in the size of the two queries.
Performing the two containment checks may not be polyno-
mial in the size of the queries [5]. However, there are sub-
classes of conjunctive queries for which Step H3 is tractable
[7, 20]. These query classes include queries with no self joins,
queries with at most one self join, simple tableaux queries,
acyclic queries and queries with bounded query-width. We
discuss these cases in Section 5.
Step H2: Since we are only considering conjunctive queries
(without inequalities), checking whether a set of subgoals
G is compatible with a tuple t is linear in the number of
subgoals. It is sufficient to check for every G ∈ G, if G[i] has
a constant, then t[i] has the same constant. Hence, Steps H2
and H3 can be performed in time O(m22k(nr + T (H3))),
where T (H3) is the time taken to perform Step H3, k is the
maximum number of subgoals in either query which share
the same relational symbol, n is the total number of subgoals
which appear in both the queries, r is the maximum arity of
a relation which appears in both the queries, and m relation
symbols appear in both queries. If k is a constant, both the
Steps H2 and H3 can be done in time polynomial in the size
of the inputs if the two queries QS and QV belong to one of
the query classes listed above.
Step H1: Step H1 involves a universal quantification over
the set of all tuples in the domain. Clearly, assuming that
the domain of tuples is very small (bounded by some poly-
nomial in the size of the input) ensures that the algorithm is
tractable. However, such an assumption would greatly limit
the utility of our result. In most cases, the size of the do-
main of tuples is very large compared to size of the queries.
Hence, in the rest of the section we propose an alternate
characterization for perfect privacy where we eliminate the
universal quantification over the domain of tuples. Inter-
stingly, we are able to remove the quantification over the

domain of tuples when we assume that the domain of tuples
is sufficiently large.

Definition 4.1 (Sufficiently Large Domains).
Let Q(a1, a2, . . . , am) :−G1 ∧ G2 ∧ . . . ∧ Gn ∧ CQ be a con-
junctive query. We say that the domains of the attributes
appearing in Q are sufficiently large with respect to Q, if
in every subgoal G` every variable xi can be assigned to a
distinct constant ci in the domain of the associated attribute
Ai, and ci does not appear in Q.

The plan for the rest of the section is as follows. First,
we generalize the construction Q|(G,t) to Q|(G,G), where G
is a subgoal such that every tuple compatible with G is also
compatible with all the subgoals in G. We then show that
this construction can also be used to reason about critical tu-
ples. More specifically, we show that Q|(G,G) ⊆ Q if and only
if every tuple compatible with G is not critical to Q. We
then use this construction and propose an alternate char-
acterization for perfect privacy (Theorem 4.2). This new
characterization does not involve a universal quantifier over
all the tuples in the domain. Finally, we prove Theorem 4.2
and bound the running time of a simple algorithm which
implements Theorem 4.2.

Let us start with some definitions. Let G be a set of
compatible subgoals in conjunctive query Q. We say that
a subgoal G is compatible with G if every tuple compatible
with G is also compatible with G. We call a subgoal G? the
most general unifier of G (denoted by mgu(G)) if a tuple is
compatible with G? if and only if the tuple is compatible
with G. Since we are only dealing with conjunctive queries
without inequalities, it is easy to see that the most general
unifier of a set of subgoals is unique and well defined.

Given a query Q, a set of compatible subgoals G and a
subgoal G which is compatible with G, denote by Q|(G,G)

the query ρG(Q−G). Here, ρG is a partial valuation defined
as follows:

ρG : AQ ∪BQ → AQ ∪BQ ∪KQ ∪ V such that,

ρG(xi) =

�
G[j], if G`[j] = xi, for some G` ∈ GS ∪ GV

xi, otherwise

The following two lemmas show interesting properties of
Q|(G,G). Lemma 4.1 shows that the query Q|(G,t) is con-
tained in the query Q|(G,G). Lemma 4.2 connects Q|(G,G)

and critical tuples.

Lemma 4.1. Let Q be a conjunctive query, G be a set of
compatible subgoals, G be a subgoal (not necessarily in Q)
which is compatible with G, and t be a tuple compatible with
G. Then

Q|(G,t) ⊆ Q|(G,G)

Lemma 4.2. Let Q be a conjunctive query, G be a set of
compatible subgoals in Q, and G be a subgoal (not necessarily
in Q) which is compatible with G. Every tuple compatible
with G is not critical to Q if and only if

Q|(G,G) ⊆ Q

We are now ready to state our alternate characterization
for perfect privacy.

Theorem 4.2. Let QS and QV are conjunctive queries
and the domains of attributes are sufficiently large with re-
spect to each of the queries. QV does not disclose any infor-
mation about QS if and only if for every set of compatible

subgoals GS in QS and GV in QV ,

QS |(GS ,G?) ⊆ QS OR QV |(GV ,G?) ⊆ QV

where G? = mgu(GS ∪ GV).

In the remainder of this section, we prove the above the-
orem. Proving the “if” direction of the above condition is
quite easy. Suppose tuple t is critical to both QS and QV .
Then from Theorem 3.1, there are sets of subgoals GS in QS

and GV in QV such that

QS |(GS ,t) 6⊆ QS AND QV |(GV ,t) 6⊆ QV

Since t is compatible with GS and GV , t is also compatible
with G? = mgu(GS ∪ GV). Hence, using Lemma 4.1, we get

QS |(GS ,G?) 6⊆ QS AND QV |(GV ,G?) 6⊆ QV

Proving the other direction, however, is trickier. We need
to show that if QS |(GS ,G?) 6⊆ QS and QV |(GV ,G?) 6⊆ QV ,
then QS and QV share a critical tuple. From Lemma 4.2,
all we can say is that there are tuples tS and tV such that
tS and tV are compatible with G? (and hence compatible
with GS and GV), such that tS is critical to QS and tV is
critical to QV . In fact, unless we assume the domains are
sufficiently large, this is all the above condition guarantees.

The sufficiently large domain assumption ensures that given
a query Q there is a valuation which maps every symbol in
Q to a distinct constant in the respective domain. Using
this property, we can prove a stronger version of Lemma 4.2
which in turn will help us to prove the theorem.

Definition 4.2 (Fine Q|(G,G?)-Critical Tuple).
Let Q be a query, G a set of subgoals in Q and G? be a
subgoal compatible with G. A tuple tf which is critical to a
query Q is called a fine Q|(G,G?)-critical tuple1 if there is a
database instance If and a valuation ρf such that

• ρf is a valuation mapping Q|(G,G?) to tuples in If such
that every variable appearing in Q|(G,G?) is mapped to
a distinct constant not appearing in the query.

• ρf (G?) = tf .

• ρf maps the goal of Q|(G,G?) to a tuple to
f such that

to
f 6∈ Q(I).

Lemma 4.3. Let Q be a conjunctive query, G be a set of
compatible subgoals in Q, and G? be a subgoal (not necessar-
ily in Q) which is compatible with G. Under the sufficiently
large domain assumption, Q|(G,G?) 6⊆ Q if and only if one
of the tuples compatible with G? is a fine Q|(G,G?)-critical
tuple.

Lemma 4.3 guarantees that if QS |(GS ,G?) 6⊆ QS and
QV |(GV ,G?) 6⊆ QV , then there exist tS and tV compatible
with G? such that tS is a fine QS |(GS ,G?)-critical tuple and
tV is a fine QV |(GV ,G?)-critical tuple. We use this property
to show that tS is critical to QV .

Consider a mapping γ : K → K (from the domain of all
constants to the domain of all constants) such that γ(tV [i]) =
tS [i] and γ(tS [i]) = tV [i], and γ is an identity function for
constants not appearing in tV or tS . It is easy to see that γ
has the following properties.

1A similar definition is used in the proof of hardness of
checking perfect privacy in [18]

Algorithm 2 Perfect Privacy (Sufficiently Large Domains)

Input: Conjunctive Queries QS and QV

Output: Whether QS and QV share a critical tuple.
1: //for every set of subgoals in the two queries
2: for all GS ⊆ GQS

, GV ⊆ GQV
do

3: //if all the subgoals in GS ∪ GV are compatible.
4: if GS ∪ GV are compatible subgoals of relation R of arity

r then
5: //consider the partial valuation ρ′ mapping the

//subgoals in GS ∪ GV to G? = mgu(GS ∪ GV)
6: Let G? be a subgoal such that

1 ≤ i ≤ r, ∃G ∈ GS ∪ GV : G[i] = ci ⇒ G?[i] = ci

1 ≤ i, j ≤ r, ∃G, G′ ∈ GS ∪ GV ,

G[i] = G′[j] ⇒ G?[i] = G?[j]

Let {g1, g2, . . .} be the set of distinct variables appearing
in G?.

7: ρG? : AQ ∪BQ → AQ ∪BQ ∪KQ ∪ V such that

ρG? (xi) =

�
G?

j , if G`[j] = xi, for some G` ∈ GS ∪ GV

xi, otherwise
8: QS |(GS ,G?) = ρG? (QS − GS),

QV |(GV ,G?) = ρG? (QV − GV).

9: //check if QS |(GS ,G?) ⊆ QS and QV |(GV ,G?) ⊆ QV

10: if
�
QS |(GS ,G?) 6⊆ QS AND QV |(GS ,G?) 6⊆ QV

�
then

11: return QS and QV SHARE a critical tuple.
12: end if
13: end if
14: end for

15: return QS and QV do NOT SHARE a critical tuple.

Lemma 4.4. Let QS and QV be conjunctive queries, GS

be a set of subgoals in QS, GV be a set of subgoals in QV and
G? be a subgoal compatible with GS ∪ GV . Let tS and tV be
tuples compatible with G? such that tS is a fine QS |(GS ,G?)-
critical tuple, and tV is a fine QS |(GV ,G?)-critical tuple. Let
γ : K → K be a mapping such that γ(tV [i]) = tS [i] and
γ(tS [i]) = tV [i]. The mapping γ has the following properties
under the sufficiently large domain assumption

• γ is a bijection.

• for every constant c appearing in QV , γ(c) = c.

With Lemma 4.4, the rest of the proof of Theorem 4.2 is
straightforward. Let I ′V = γ(IV). Then from Lemma 4.4,
I ′V ∪ {tS} = γ(IV ∪ {tV }). Lemma 4.4 also shows that γ
changes the value of a constant only if the constant does
not appear in QV . Hence, ρ is a valuation mapping QV to
some I if and only if γ ◦ ρ is a valuation mapping QV to
γ(I). Therefore,

QV (IV ∪ {tV }) 6⊆ QV (IV)

⇒ QV (γ(IV ∪ {tV })) 6⊆ QV (γ(IV))

⇒ QV (I ′V ∪ {tS}) 6⊆ QV (I ′V)

Hence, tS ∈ crit(QS) ∩ crit(QV), completing the proof.
Algorithm 2 sketches a simple algorithm which imple-

ments Theorem 4.2. Since we have eliminated the universal
quantifier over tuples, we are left with only two steps which
contribute to the complexity of Algorithm 2.

• H2’: for every set of subgoals GS in QS and GV in
QV which are compatible (Line 2).

• H3’: Checking whether QS |(GS ,G?) ⊆ QS OR
QV |(GV ,G?) ⊆ QV (Line 10).

We bound the running time of Algorithm 2 in terms of
the notation in Figure 4 and use it in Section 5 to moti-
vate our search for tractable query classes. Given a set of
compatible subgoals GS in QS , GV in QV (say, of relation
R), the most general unifier G? can be constructed in time
O(rR(|GS |+ |GV |)), where rR is the arity of relation R. The
queries QS |(GS ,G?) and QV |(GV ,G?) can be constructed in
time O(rR(|QS | − |GS |+ |QV | − |GV |)). Hence in total this
takes O(rn). Let T (H3′) be the time taken to perform the
two containment checks in (H3’). The number of sets of
subgoals GS ∪ GV which share the same relation symbol is
at most m22k. Hence, the running time can be bounded by

O(m22k(nr + T (H3′))) (3)

4.2 Perfect Privacy with Key Constraints
We can extend our results to the case when the relations

have key constraints as shown in the following theorem.

Theorem 4.3. Let QS and QV be conjunctive queries
and assume that the domains of attributes are sufficiently
large with respect to the queries. QV does not disclose any
information about conjunctive query QS if and only if for
every relation R appearing in both QS and QV ,

∀Ai ∈ KR, ∀GS ⊆ QS ,GV ⊆ QV , compatible on Ai on R�
QS |(GS ,ĜSi)

⊆ QS OR QS |(GV ,ĜV i)
⊆ QV

�

where ĜSi and ĜV i are the most general unifiers of GS and
GV , respectively, such that they are both compatible on the
attributes in Ai.

5. FINDING TRACTABLE CASES
In this section we show how to utilize the alternate charac-

terizations for perfect privacy to identify query classes where
checking perfect privacy is tractable. We restrict our dis-
cussion to the scenario with independent tuples, since the
reason for the intractability of checking perfect privacy is
the same in the other case. We will be using the notation
from Figure 4 in this section.

We utilize two observations to identify tractable query
classes. Our analysis of the running time of Algorithm 2
(Equation 3) shows that apart from looping over all sets
of compatible subgoals GS in QS and GV in QV (H2’) and
checking two containments (H3’), all the other steps involved
can be implemented in time polynomial in the size of the
queries. So for queries with a bounded number of self-joins
per relation (k), any query class for which query contain-
ment is tractable also permits tractable checking of perfect
privacy (Section 5.1). More interestingly, in our definitions
of privacy, the query containment checks we are interested
in are of a special form. We illustrate this for a subclass of
tableau queries, where the query containments we are inter-
ested in are so simple that we can check perfect privacy in
time O(n2r), even though query containment in that class
is not tractable in general (Section 5.2). In fact, perfect pri-
vacy is tractable even if the number of self-joins per relation
is not bounded by a constant. We also briefly discuss the
complexity of checking perfect privacy when the two queries
are from two different query classes (Section 5.3).

5.1 Using Tractability of Q1 ⊆ Q2

Since the seminal paper by Chandra and Merlin [5], which
showed the NP -hardness of query containment for conjunc-
tive queries, there has been a lot of work in finding subclasses
of conjunctive queries for which the query containment prob-
lem is tractable. We utilize this work to identify four major
classes of queries where checking perfect privacy is tractable
– queries with at most one self join per relation (using re-
sults in [20]), simple tableau queries with bounded k (using
results in [2]), acyclic queries with bounded k, and queries
with bounded query-width with bounded k (using [7]).

5.1.1 Queries with at most one self join per relation
We start with a very simple case. Saraiya [20] shows that

checking Q ⊆ Q′ is tractable whenever Q and Q′ are such
that for every subgoal G′ in Q′ there are at most two sub-
goals in Q which are compatible with G′.

Theorem 5.1 (Tractability of Containment [20]).
Let Q1 and Q2 be two conjunctive queries such that every
subgoal in Q2 is compatible with at most two subgoals in Q1.
Then Q1 ⊆ Q2 can be checked in time O(n2r)

The algorithm presented in [20] runs in time O(n2r).
For the class of queries with at most one self-join, there

are at most two subgoals of a relation in any query. Hence,
any Q|(G,Ĝ) will also be a query with at most one self join.

Therefore, Q|(G,Ĝ) ⊆ Q can be checked correctly using the

algorithm in [20]. Moreover, since k(Q) ≤ 2 for any query,
we only need to loop over O(n) sets of the form GS ∪ GV .

Theorem 5.2 (Tractability of Perfect Privacy).
Let QS and QV be two queries having at most one self-join.
Then perfect privacy can be checked in time O(n3r).

5.1.2 Acyclic & Bounded Query-width Queries
There has been extensive work on relating the structure of

conjunctive queries and the hardness of query containment.
In particular, Chekuri and Rajaram [7] relate the hardness of
query containment to the cyclicity of the query graph. The
query graph is a hyper graph whose nodes are the symbols
appearing in the query and hyper-edges are the subgoals in
the query. A query is acyclic if the query graph is acyclic.

The “degree of cyclicity” in a query is usually measured
using query-width. Acyclic queries have a query-width of
1. The basic idea behind query-width is the following. An
acyclic query can be decomposed into a tree, with each ver-
tex in the tree corresponding to one subgoal in the query.2

This tree preserves properties like which subgoals share vari-
ables. For a cyclic query one may be able to construct a tree
with each vertex in the tree corresponding to more than one
subgoal. The query-width is the largest number of subgoals
which are mapped to a single vertex in the “best” tree de-
composition. We refer the reader to [7] for formal definitions.

Theorem 5.3 (Tractability of Containment [7]).
Let Q2 be a query with a query-width bounded by c. Then
Q1 ⊆ Q2 can be checked in time O(c2rnc+1 log n).

This gives us the following result on the complexity of check-
ing perfect privacy.

2This can be done by using the GY O-reduction on the
query-graph ([25]).

QS(name) :− P (pid, name),

D(pid, Hepatitis, b1), D(pid, Cancer, b2)

PID PName Disease Medication
QS name
P pid name
R pid Hepatitis b1
R pid Cancer b2

Figure 5: Query QS and its tableau representation

Theorem 5.4 (Tractability of Perfect Privacy).
Let QS and QV be queries having query-width bounded by c
and at most k self-joins per relation. Then perfect privacy
can be checked in time O(m22kc2rnc+1 log n).

5.1.3 Simple Tableau Queries
In many database schemas, different attributes in the schema

are incomparable. The hospital database schema in Figure 1
is one such example. Hence, in any conjunctive query on an
instance of the hospital schema, a variable cannot be bound
to two different attributes. Such queries are called tableau
queries, or short tableaux.

Definition 5.1 (Tableau Query [2]).
A tableau query Q is a conjunctive query where every vari-
able (distinguished or non-distinguished) cannot be associ-
ated with two different attributes in the relational schema.

As the name suggests, a tableau query is usually represented
in a tabular form. The columns of this table are the at-
tributes that appear in the query. The rows of the table are
the subgoals of the query, and all definitions from Section 2.1
that involve subgoals thus extend to rows of a tableau query.
The goal of the query is represented by the first row in the
table called the summary row. Each row is labeled with the
relation associated with the corresponding subgoal. Figure 5
illustrates a tableau representation of a tableau query. Note
that no variable appears in more than one column. Even
for this restricted class of queries, Aho et al [2] show that
the query containment problem is NP -hard. They identify
a further subclass of queries, called simple tableau queries,
wherein query containment is tractable. The query illus-
trated in Figure 5 is an example of a simple tableau query.

Definition 5.2 (Simple Tableau Query [2]).
A tableau query is simple if in any column with a repeated
non-distinguished variable there is no other symbol that ap-
pears in more than one row.

Theorem 5.5 (Tractability of Containment [2]).
Let Q1 and Q2 be two simple tableaux. Then Q1 ⊆ Q2 can
be checked in time O(n3r2).

For us to be able to use the above tractability result, we
need to show that given a simple tableau query Q, a set of
compatible subgoals G and a subgoal Ĝ compatible with G,
the query Q|(G,Ĝ) is also a simple tableau query.

Lemma 5.1. Let Q be a simple tableau query, G a set of
compatible subgoals in Q and Ĝ a row (not necessarily in Q)
compatible with G. Then Q|(G,Ĝ) is a simple tableau query.

Using Lemma 5.1 and Theorem 5.5 we obtain the following
theorem.

Theorem 5.6 (Tractability of Perfect Privacy).
Let QS and QV be two simple tableaux with at most k rows
tagged with the same relation. Perfect privacy can be checked
in time O(m22kn3r2).

5.2 Using Tractability of Q|(G,Ĝ) ⊆ Q

Our strategy to identify tractable query classes until now
as limited to identifying query classes where query contain-
ment is tractable, without taking into account that the con-
tainments we need to check have a specific form. In this
section we exploit this fact to identify another query class
where checking perfect privacy is tractable.

We continue our discussion on tableau queries. Define a
partial order ≺ on the rows of the tableau as follows: if two
rows r1 and r2 are tagged with the same relation, r1 ≺ r2 if

∀i∀c : r1[i] = c ⇒ r2[i] = c, for some constant c

The above condition says that r1 ≺ r2 if in every column
that r1 has a constant, r2 has the same constant. We can
now define a maximal row.

Definition 5.3 (Maximal Row). We call a row r in
a tableau a maximal row if there is no other row r′ tagged
with the same relation as r such that r ≺ r′.

The query class we are considering in this section are those
tableau queries which only contain maximal rows. We call
such tableaux maximal row tableaux. The query QS from
Figure 5 is an example of a maximal row tableaux.

Definition 5.4 (Maximal Row Tableau). A tableau
is a maximal row tableau if for every two rows r1 and r2

tagged with the same the relation, r1 6≺ r2 and r2 6≺ r1.

Unlike in the previous cases, where we considered query
classes which permitted efficient query containment, we show
that query containment is NP -hard (similar to [2]) even
when the two queries are maximal row tableaux.

Theorem 5.7 (Intractability of Containment).
Let Q1 and Q2 be two maximal row tableaux. Checking Q1 ⊆
Q2 is NP -complete.

Nevertheless, we are only interested in specific contain-
ments. We illustrate this using the critical tuple check. To
show that a tuple t is critical to Q, it is enough to show a
set of subgoals G in Q which are compatible with t such that
Q|(G,t) 6⊆ Q. If t is compatible with G, then t is compatible
with every G ∈ G. Consider Q|(G,t), when Q is a maximal
row tableau.

Q|(G,t) ⊆ Q iff there is a homomorphism h from the sym-
bols in Q to the symbols in Q|(G,t) such that h is an identity
function on constants and for any subgoal G′ in Q, h(G′)
is a subgoal in Q|(G,t) [5]. However, the following argument
shows that there is no h such that h(G) is a subgoal in
Q|(G,t). First, G does not appear in Q|(G,t). Second, since
Q is a maximal row tableau, for any other subgoal G′ in
Q having the same relation as G, there is some column i
where G[i] = c, a constant, and G′[i] is either a variable or a
different constant. G′ appears as ρt(G

′) in Q|(G,t). Since no
variable repeats across columns, ρt(G

′)[i] = G′[i]. Hence,
no homomorphism will map G in Q to ρt(G

′) in Q|(G,t), for
all G′ 6= G, implying that Q|(G,t) 6⊆ Q.

Lemma 5.2. Let Q be a maximal row tableau, t a tuple
and G a subgoal in Q which is compatible with t. Then

Q|(G,t) 6⊆ Q

As a consequence of Lemma 5.2, a tuple is critical to a max-
imal row tableau if and only if it is compatible with some
row in the maximal row tableau. Thus we can now prove
the following Theorem:

Theorem 5.8 (Tractability of Perfect Privacy).
Let QS and QV be two maximal row tableaux. Then QS and
QV share a critical tuple if and only if there are subgoals GS

in QS and GV in QV such that GS is compatible with GV .
Hence, perfect privacy can be checked in time O(n2r).

5.3 Queries from Different Classes
Recall that the running time of Algorithm 2 is bounded

by the product of (nr + T (H3′)) and the number of query
containments to be checked. When QS and QV are from the
query classes specified in Section 5.1, the number of query
containments to be checked is bounded by O(m2k). T (H3′)
is bounded by the running time of query containment for
the class where checking query containment is less efficient.

As we showed in Theorem 5.8, for maximal row tableaux,
we need not loop over all subsets of compatible subgoals.
Hence, if QS is a maximal row tableau, and QV is from
one of the subclasses listed in Section 5.1 (or vice versa),
the number of containments to be checked is bounded by
O(n2k). Hence, we get the following theorem,

Theorem 5.9. Let QS be a maximal row tableau. The
complexity of checking whether a conjunctive query QV is
perfectly private with respect to QS is

• O(n · r), if QV has no self-joins.

• O(n · n2r), if QV has at most one self-join.

• O(n2k · c2rnc+1 log n), if QV has query-width bounded
by c and at most k self-joins per relation.

• O(n2k · n3r2), if QV is a simple tableau query with at
most k self-joins per relation.

6. RELATED WORK
We start with related work on privacy policy design. In

mandatory access control each data item (row, column or
cell in a table) is given a security level and users with a
higher clearance can access the data item [4]. Discretionary
access control involves granting and revoking access autho-
rizations to users [12]. Early authorization models did not
allow negative authorization (what information a user should
not access). Subsequent work propose authorization mecha-
nisms which allow positive authorizations on views and neg-
ative authorizations only on base tables (like in [3]).

Miklau and Suciu propose a model where negative au-
thorizations are specified using a query QS [18]. The user
is allowed to see all the information that does not disclose
any information about QS , hence the name perfect privacy.
Enforcing perfect privacy for conjunctive queries is shown
to be very intractable. This model has been extended to
allow for arbitrary dependencies in the database and views
which have are already been published [9]. Checking perfect
privacy in this setting is even harder.

Allowing only queries which disclose no information about
the QS might be too restrictive. A less restrictive privacy
guarantee based on asymptotic conditional probabilities is
presented in [8]. Certian answer privacy is yet another pri-
vacy guarantee which disallows only those QV which disclose

that some tuple is for sure in the output of QS [21]. Statisti-
cal databases allow answering aggregate information about
a sensitive column (like salary) while guaranteeing that the
exact value in any row is not disclosed [1]. Work on de-
identification attempt to ensure that an individual cannot
be associated with a unique tuple in an anonymized table.
k-anonymity [22] ensures that every indicvidual cannot be
identified within a group of tuples of size k. Anonymity met-
rics based on “blending in a crowd” have been proposed as-
suming strict restrictions on the data distribution [6]. These,
however, do not guarantee privacy of sensitive information,
since all the individuals in a group could have the same sensi-
tive information. `-diversity, fixes this problem and guards
against limited amounts of background knowledge by en-
suring that given a sensitive attribute, every individual is
associated with at least ` distinct values (which are roughly
equi-probable) for the sensitive attribute [17].

There has been a lot of work on the problem of query
containment; i.e., “Is Q1 ⊆ Q2?”. Query containment for
conjunctive queries was shown to be NP-hard [5]. Subse-
quently, there has been a lot of work on identifying restricted
classes of queries where the problem is tractable [2, 7, 20]
(we have discussed these in detail in Section 5). The re-
sults in [7] extend those in [19, 24] for acyclic queries, since
acyclic queries have query width 1. More recently, query
containment has been identified to be the same problem as
the constraint satisfaction problem (CSP) [16]. Gottlob et
al compare different restrictions on the structure of a CSP
which make the problem tractable [11]. They show that the
restriction on hypertree width is the most general of these
restrictions.

It has been shown that query containment is even harder
for conjunctive queries with inequalities [14, 23]. Though
the problem is easier if each relation symbol appears at most
twice in Q1, the problem is still shown to be co-NP-complete
[15]. Restriction on query-width does not make the problem
easier in the presence of inequalities.

7. CONCLUSIONS
The problem of enforcing perfect privacy was known to

be highly intractable even for conjunctive queries without
inequalities. In this paper we identify many subclasses of
conjunctive queries for which enforcing perfect privacy is
tractable. This helps policy designers to decide what policies
can be efficiently enforced. As future work, we would like
to identify sufficiently expressible subclasses of conjunctive
queries with inequalities.
Acknowledgements: We thank A. Evfimievski, P. Ko-
laitis, R. Srikant, and H. Corrada-Bravo for insightful dis-
cussions. This work is supported by NSF grant IIS-0121175,
the KDD Initiative, and by a gift from Microsoft through
Jim Gray. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the sponsors.

8. REFERENCES
[1] N. R. Adam and J. C. Wortmann. Security-control

methods for statistical databases: A comparative
study. ACM Comput. Surv., 21(4):515–556, 1989.

[2] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences
among relational expressions. Siam Journal of
Computing, 1979.

[3] E. Bertino, S. Jajodia, and P. Samarati. A flexible
authorization mechanism for relational data
management systems. ACM Trans. Inf. Syst., 1999.

[4] S. Castano, M. Fugini, G. Martella, and P. Samarati.
Database Security. Addison Wesley, 1995.

[5] A. K. Chandra and P. M. Merlin. Optimal
implementation of conjunctive queries in relational
databases. In STOC, 1977.

[6] S. Chawla, C. Dwork, F. McSherry, A. Smith, and
H. Wee. Toward privacy in public databases. In TCC,
2005.

[7] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. In ICDT, 1997.

[8] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic
conditional probabilities for conjunctive queries. In
ICDT, 2005.

[9] A. Deutsch and Y. Papakonstantinou. Privacy in
database publishing. In ICDT, 2005.

[10] Simson Garfinkel. Database nation: the death of
privacy in the 21st century. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2001.

[11] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural csp decomposition methods. Artif.
Intell., 2000.

[12] P. P. Griffiths and B. W. Wade. An authorization
mechanism for a relational database system. ACM
Trans. Database Syst., 1(3), 1976.

[13] K. Kenthapadi, N. Mishra, and K. Nissim.
Simulatable auditing. In PODS, 2005.

[14] A. Klug. On conjunctive queries containing
inequalities. Journal of the ACM, 35(1):146–160, 1988.

[15] P. Kolaitis, D. L. Martin, and M. N. Thakur. On the
complexity of the containment problem for conjunctive
queries with built-in predicates. In PODS, 1998.

[16] P. Kolaitis and M. Vardi. Conjunctive-query
containment and constraint satisfaction. In PODS,
1998.

[17] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. `-diversity: Privacy beyond
k-anonymity. In ICDE, 2006.

[18] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. In SIGMOD,
2004.

[19] X. Qian. Query folding. In ICDE, 1996.

[20] Y. P. Saraiya. Polynomial-time program
transformations in deductive databases. In PODS,
1990.

[21] K. Stoffel and M. Studer. Provable data privacy. In
DEXA, 2005.

[22] L. Sweeney. k-anonymity: a model for protecting
privacy. IJUFKS, 10(5):557–570, 2002.

[23] R. van der Meyden. The complexity of querying
indefinite data about linearly ordered domains. JCSS,
54(1), 1997.

[24] M. Yannakakis. Algorithms for acyclic database
schemes. In VLDB, 1981.

[25] C. T. Yu and M. Z. Ozsoyoglu. An algorithm for
tree-query membership of a distributed query. In
IEEE COMPSAC, 1979.

