Learning, so far.

Decision Tree Learning
perhaps the most common used method in practice
datamining, IBM etc.

Evaluation:
training set and test set / direct tradeoff
overfitting / pruning: learning curves
Next: example of very different method
“Cased-Based Learning”
Case-Based Reasoning/Learning

Quite different from standard logical reasoning.

Idea: store large number of previously seen cases
 Attempt to match current (unseen) case to closest stored one.

Appears quite suitable for legal reasoning (1,000,000+ cases).
What would be some of the difficulties?

Slide CS472–3

Closely related: Case-Based Learning

k-nearest neighbor learning.

A: set of features, A_1, \ldots, A_n that describe the problem

$X = X_{a_1}X_{a_2}\ldots X_{a_n}$, where X_{a_i} is the value of feature A_i in example X

$f(X) : X \rightarrow c \in C = \{c_1, \ldots, c_m\}$

The case base is the set of training examples

$(X_1, f(X_1)), (X_2, f(X_2)), \ldots$

Slide CS472–4
k-nearest neighbor algorithm for computing \(f(X) \):

1. Compare new example, \(X \), to each case, \(Y \), in the case base and calculate for each pair:

\[
sim(X, Y) = \sum_{i=1}^{n} \text{match}(X_{A_i}, Y_{A_i})
\]

where \(\text{match}(a, b) \) is a function that returns 1 if \(a \) and \(b \) are equal and 0 otherwise.

2. Let \(R = \) the top \(k \) cases ranked according to \(\sim \)

3. Return as \(f(X) \) the class, \(c \), that wins the majority vote among \(f(R_1), f(R_2), \ldots, f(R_k) \)

Example of case retrieval

<table>
<thead>
<tr>
<th>outlook</th>
<th>temp</th>
<th>humidity</th>
<th>windy</th>
<th>plan</th>
<th>(\sim)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>cs472</td>
<td>3</td>
</tr>
<tr>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>true</td>
<td>cs472</td>
<td>2</td>
</tr>
<tr>
<td>overcast</td>
<td>hot</td>
<td>high</td>
<td>false</td>
<td>soccer</td>
<td>2</td>
</tr>
<tr>
<td>overcast</td>
<td>mild</td>
<td>normal</td>
<td>true</td>
<td>football</td>
<td>1</td>
</tr>
<tr>
<td>rain</td>
<td>mild</td>
<td>high</td>
<td>false</td>
<td>cs472</td>
<td>3</td>
</tr>
<tr>
<td>rain</td>
<td>cool</td>
<td>normal</td>
<td>false</td>
<td>soccer</td>
<td>1</td>
</tr>
</tbody>
</table>

\(A \): outlook, temp, humidity, windy
\(C = \{ \text{soccer, cs472} \} \)
\(k = 3 \) (majority vote top 3 cases)
test case: $X =$ sunny mild high false

top three: case 1, 5, and 2 (random tie breaking)
majority vote: cs472.

Case-Based Learning (Reasoning)
 Drawbacks? Difficulties?
 Would it work on our restaurant examples?

Still, algorithms outperforms all others on
certain challenging tasks.

E.g. handwritten character recognition (postal service).
Valiant’s Theory of Learning

Arguably the first big step to a rigorous understanding of what it means for a machine to learn.

Compare: development of the **theory of computation**
Turing, Godel, Von Neumann

Just the beginning, still many open issues.

Slide CS472–9

Computational Learning Theory

How can we put machine learning on a rigorous footing?

Starting point:

Induction. So far, given **training set**, **learning algorithm** generates **hypothesis**.

Run hypothesis on **test set**. Says something about how good our hypothesis is. **But**, how much does it tell you?

Can you be certain??

Slide CS472–10
Can never be absolutely certain about generalization...
(would have to see all examples)

Valiant’s insight: introduce probabilities to measure
a degree of certainty.

Need **Stationary assumption**: that is,
training and test examples are drawn from the same
probability distributions.

Ex. try using “height” to distinguish men and women —
better draw people form the same distribution for
training and testing!

Slide CS472–11

Now, we can never be **absolutely certain** that we have learned
our target (hidden) concept / function. (E.g., there is
a non-zero chance that, **so far**, we only saw a sequence
of “bad” examples.

E.g., relatively tall women and relatively short men . . .

Luckily, we will see that it’s generally **highly unlikely**
to see a long series of bad examples!

Slide CS472–12
Aside: Flipping A Coin

Assume, we’re flipping a coin m times. We expect to observe roughly $0.5 \times m$ “heads”.

Let’s say we have a “bad run” (i.e., one that suggests that the coin is not fair. Say, the bad run contains 10% more heads than expected. I.e., p would appear to be 0.55!

How likely / unlikely is that?

Concretely — What’s the probability of

1) $m = 100$, run with more than 55 heads.
2) $m = 1000$, run with more than 550 heads.
3) $m = 10,000$, run with more than 5500 heads.
\[m = 100 \quad Pr[S > 55] \leq 0.6 \]
\[m = 1,000 \quad Pr[S > 550] \leq 0.007 \quad (\leq 0.1\%) \]
\[m = 10,000 \quad Pr[S > 5500] \leq 10^{-22} \]

We can calculate these probabilities using the so-called Chernoff bounds. (Also, Hoeffding.)

We have,
\[Pr[S > (p + \gamma)m] \leq e^{-2m\gamma^2} \]
\[Pr[S > (p - \gamma)m] \leq e^{-2m\gamma^2} \]

Here, we have \(p = 0.5, \gamma = 0.05. \)
Some more experimental data

C program

Runs of 100 flips (expect 50 “tails”):
 On 1,000 tries reached 66
 On 10,000 tries reached 69
 On 100,000 tries reached 70
 On 1,000,000 tries reached 74 (48% over 50)

Runs of 1000 flips (expect 500 “tails”):
 On 1,000 tries reached 564
 On 10,000 tries reached 564
 On 100,000 tries reached 569
 On 1,000,000 tries reached 579 (16% over 500)
Runs of 10,000 flips (expect 5000 “tails”):
 On 1,000 tries reached 5150
 On 10,000 tries reached 5183
 On 100,000 tries reached 5231
 On 1,000,000 tries reached 5239 (5% over 5000)
 (note the difference with trying to reach 10% over!)

Coin example is the key to randomized algorithms.

You get pretty accurate very fast.
 (relatively few flips.)
Bounds show how “rare” bad runs become in large samples!

 Exponential drop off — can get good results
 with modest number of examples (“polynomially many”)

Hope for polytime algorithms!
 Aside: Can get pretty much “certainty” out of
 probabilistic phenomena / secret behind randomized algs.

E.g. estimating **integrals** / **Monte-Carlo** methods.
 Worth considering!

Slide CS472–21