Foundations of Artificial Intelligence

CS472/3
Lecture #22

Bart Selman

Today’s Lecture
Knowl. Repr., cont.
Inference, cont.
Chapter 8 & 9, R&N.
Last time: Formal Representation of Circuit

- circuit diagram captured in
 general rules about gates, signals, and connecting terminals
 E.g. \(\forall t_1, t_2 \) \(\text{Connected}(t_1, t_2) \implies \text{Signal}(t_1) = \text{Signal}(t_2) \)

 with atomic facts given the actual circuit
 E.g., \(\text{Type}(A2) = \text{AND} \).

Slide CS472–3

Allows us to reason about overall behavior.
E.g. What inputs give a particular output.
Used in analysis of circuits/systems.
Contrast with Truth table method.
And querying (What logically follows from specification.).

Slide CS472–4
Diagnosis

So far, discussed checking specification.
How about diagnosing circuit?
\textit{i.e., given inputs and outputs, find faulty gates.}

Why bother?

Don’t you normally just throw the chip out??
\textbf{A. Still need good} testing patterns.
\textit{i.e., ones with large coverage,}
Method applicable at higher level, \textit{i.e., in terms of larger components.}
Also other domains:
\begin{itemize}
\item Cassini mission to Saturn (on its way...)
 \textit{real-time diagnosis / 25 msec decisions!}
 \textit{2,000} vars and \textit{10,000} clauses \textit{SAT} problem
\item Software diagnosis / synthesis
 \textit{Components are subroutines / classes.}
\end{itemize}
Many different possibilities...

In practice, rank according to likelihood.
E.g. single-fault more likely than double fault.
Also, incorporate failure rates of components.
(reasoning with uncertainty)

Slide CS472–7

For example, what happens if we assert with our initial KB that:

\[\text{Signal(In(1, C1)) = On, \quad Signal(In(2, C1)) = On} \]
\[\text{Signal(In(3, C1)) = On} \]
\[\text{Signal(Out(1, C1)) = On, \quad Signal(Out(2, c1)) = Off} \]

Slide CS472–8
Need to capture possibly faulty behavior.

4') \(\forall g \ ((\text{Type}(g) = \text{OR}) \land \text{Functioning}(g)) \Rightarrow \)

\(\text{Signal}(\text{Out}(1, g)) = \text{On} \Leftrightarrow \)

\(\exists n \ \text{Signal}(\text{In}(n, g) = \text{On}) \)

Slide CS472–9

KB with \(\forall x \ \text{Functioning}(x) \) with

\(\text{Signal}(\text{In}(1, C1)) = \text{On}, \quad \text{Signal}(\text{In}(2, C1)) = \text{On} \)

\(\text{Signal}(\text{In}(3, C1)) = \text{On} \)

implies

\(\text{Signal}(\text{Out}(1, C1)) = \text{On}, \quad \text{Signal}(\text{Out}(2, c1)) = \text{On}. \)

Slide CS472–10
So, if we observe
\[\text{Signal}(\text{Out}(1, C1)) = \text{On}, \quad \text{Signal}(\text{Out}(2, c1)) = \text{Off}. \]

It follows that one or more of the \textit{Functioning()} predicates must be \textbf{false}.
Finding the smallest set of non-functioning components consistent with the observations is called \textbf{abductive} or \textbf{diagnostic} reasoning.

Slide CS472–11

Which component(s) is (are) non-functioning?

Aside: abductive reasoning is generally computationally harder than deductive reasoning.
Still, currently abductive reasoning more widely applied because of the need for constant monitoring of complex systems.

Slide CS472–12
General Logical Inference

Relatively straightforward KB can quickly overwhelm general resolution methods.
Resolution strategies reduce the problem somewhat, but not completely.
As a consequence, many practical Knowledge Representation formalisms in AI use a restricted form and specialized inference.
Can often understand them in terms of standard first-order logic! (clear syntax & semantics)

Slide CS472–13

KR Systems (Chapt. 10, R&N)

- Theorem provers / logic programming
- Production systems
 - forward chaining / if-then-rules / expert systems
- Frame systems and semantic networks
- Description logics

Slide CS472–14
Theorem provers / logic programming

Theorem provers: generally based on resolution
 many different strategies to improve efficiency
Logic programming: program statements directly in
 restricted FOL (Horn clauses).
 Execution: search for proof of goal/query
 using backward chaining with depth first-search.
 In certain cases too inefficient.

Slide CS472–15

Production systems

- rich history in AI
- “expert system” boom in 70's / 80's
Basic idea:
 capture knowledge of human expert in a
 large set of “if-then” rules
 (really, logical implication ⇒)
 “production rules”

Slide CS472–16
Example: Car Diagnosis

Rule 1
If the engine is getting gas, and the engine will turn over, then the problem is spark plugs.

Rule 2
If the engine does not turn over, and the lights do not go on then the problem is battery or cables.

Rule 3
If the engine does not turn over, and the lights do come on then the problem is the starter motor.

Rule 4
If there is gas in the fuel tank, and there is gas in carburetor then the engine is getting gas.
A goal-driven or backward chaining expert system. Start with goal-expression e.g. “∃X Problem(X)”
Match with one of the rules (1, 2, or 3)
Depth-first backward, so pick 1.
Place premises in working memory.
Try to prove premises.
E.g. use rule 4.
Until base facts can be observed.

E.g.:
Problem (X)
Problem (spark plugs) [rule 1]
engine getting gas & engine turns over (OK)
gas in fuel tank (OK) & gas in carb. (OK) &
engine turns over (OK) [rule 4]
bottom facts confirmed; problem “spark plugs” found.
What if one or more bottom facts were not confirmed?
Follows roughly the process of hypothesis testing in human problem solving.

Could it be this? Could it be that? Is so, then this must hold. Otherwise, that must be true. Etc. Etc.

Chaining through rules; either backwards or forwards. Goes back to early cognitive studies of human problem solving behavior (Newell and Simon 1961; 1972).

Rich history. Led to quite successful **expert systems**
(concrete examples later)

Bottleneck: Getting the rules!

The **Knowledge Acquisition Problem**.
(all the knowledge is in the rules)
How does this form of diagnosis differ from the earlier circuit diagnosis example?
 [logical specification circuit
 I/O facts
 minimal fault set to restore consistency]

Slide CS472–23

Circuit example: diagnosis from first-principles
 use full description of circuit — deep knowledge.
Here “shallow knowledge”.
 no full model of car.
direct encoding of diagnostic rules.
 [weak methods use weak info about domain]
See also chapter 1, R&N.

Slide CS472–24
Deep Blue vs. Kasparov

Which one from “First Principles”?

Success in two opposite directions

1) Computers appear better at “reasoning from first principles.” (possibly because of raw speed)
 Approach reduces the Knowledge Acquisition Problem.

2) Rule-based approach to the extreme:
 Case-Based Reasoning Systems
 If-then rules, but no chaining; match current situation to a known previous case & do what you did then (single rule).
 E.g. Store 50,000+ car repair scenarios
 use closest match
Successes in Rule-Based Reasoning

Expert systems

- DENDRAL (Buchanan et al., 1969)
- MYCIN (Feigenbaum, Buchanan, Shortliffe ca. 1972)
- PROSPECTOR (Duda et al., 1979)
- R1 (McDermott, 1982)

page 22 & 23 R&N.

Slide CS472–27

- DENDRAL (Buchanan et al., 1969)
 - infers molecular structure from the information provided by a mass spectrometer
 - if there are peaks at x_1 and x_2 s.t.
 \[x_1 + x_2 = M + 28 \]
 \[x_1 - 28 \text{ is a high peak} \]
 \[x_2 - 28 \text{ is a high peak} \]
 At least one of x_1 and x_2 is high
 then there is a ketone subgroup

Slide CS472–28
• MYCIN (Feigenbaum, Buchanan, Shortliffe)
 – diagnosis of blood infections
 – 450 rules; performs as well as experts
 – incorporated certainty factors
 If: (1) the stain of the organism is gram-positive, and
 (2) the morphology of the organism is coccus, and
 (3) the growth conformation of the organism is clumps,
 then there is suggestive evidence (0.7) that the identity of the organism is staphylococcus.

Slide CS472–29

• PROSPECTOR (Duda et al., 1979)
 – correctly recommended exploratory drilling at a geological site
 – rule-based system founded on probability theory

• R1 (McDermott, 1982)
 – designs configurations of computer components (DEC)
 – about 10,000 rules
 – by 1986, saving company about $40 million a year

Slide CS472–30
Cognitive Modeling with Rule-Based Systems

SOAR is a general architecture for building intelligent systems.

- Long term memory consists of rules.
- Working memory describes current state.
- All problem solving, including deciding what rule to execute, is state space search.
- Successful rule sequences are *chunked* into new rules.
- Control strategy embodied in terms of meta-rules.

What’s the difference between rule-based systems and general theorem proving systems?

(Horn clause sentences only.)*

Also, forward-chaining production systems

- no queries; rules are continuously fired based on current state of the knowledge-base.
- good for modeling actions / agents.

Advantages / disadvantages of rule-base approach?

What happened to expert systems?