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Abstract

Given the lack of word delimiters in written Japanese, word segmentation is generally
considered a crucial first step in processing Japanese texts. Typical Japanese segmenta-
tion algorithms rely either on a lexicon and syntactic analysis or on pre-segmented data;
but these are labor-intensive, and the lexico-syntactic techniques are vulnerable to the un-
known word problem. In contrast, we introduce a novel, more robust statistical method uti-
lizing unsegmented training data. Despite its simplicity, the algorithm yields performance
on long kanji sequences comparable to and sometimes surpassing that of state-of-the-art
morphological analyzers over a variety of error metrics. The algorithm also outperforms
another mostly-unsupervised statistical algorithm previously proposed for Chinese.

Additionally, we present a two-level annotation scheme for Japanese to incorporate
multiple segmentation granularities, and introduce two novel evaluation metrics, both
based on the notion of a compatible bracket, that can account for multiple granularities
simultaneously.

1 Introduction

Because Japanese is written without delimiters between words (the analogous sit-
uation in English would be if words were written without spaces between them),
accurate word segmentation to recover the lexical items is a key first step in Japanese
text processing. Furthermore, word segmentation can also be used as a more directly
enabling technology in applications such as extracting new technical terms, index-
ing documents for information retrieval, and correcting optical character recognition
(OCR) errors (Wu and Tseng, 1993; Nagao and Mori, 1994; Nagata, 1996a; Nagata,
1996b; Sproat et al., 1996; Fung, 1998).

Typically, Japanese word segmentation is performed by morphological analysis
based on lexical and syntactic knowledge. However, character sequences consisting
solely of kanji (Chinese-derived characters, as opposed to hiragana or katakana, the
other two types of Japanese characters) pose a major challenge to morphologically-
based segmenters for several reasons.
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Sequence length # of characters % of corpus

1 - 3 kanji 20,405,486 25.6
4 - 6 kanji 12,743,177 16.1
more than 6 kanji 3,966,408 5.1

Total 37,115,071 46.8

Fig. 1. Kanji statistics from 1993 Japanese newswire (NIKKEI). The sequence length cat-
egories are disjoint; to take an analogous example from English: “theQUICKbrownFOX”
has three lower-case characters in sequences of length 1-3 and five lower-case characters
in sequences of length 4-6.

First and most importantly, lexico-syntactic morphological analyzers are vulner-
able to the unknown word problem, where terms from the domain at hand are
not in the lexicon; hence, these analyzers are not robust across different domains,
unless effort is invested to modify their databases accordingly. The problem with
kanji sequences is that they often contain domain terms and proper nouns, which
are likely to be absent from general lexicons: Fung (1998) notes that 50-85% of
the terms in various technical dictionaries are composed at least partly of kanji.
Domain-dependent terms are quite important for information retrieval, information
extraction, and text summarization, among other applications, so the development
of segmentation algorithms that can efficiently adapt to different domains has the
potential to make substantial impact.

Another reason that kanji sequences are particularly challenging for morphologi-
cal analyzers is that they often consist of compound nouns, so syntactic constraints
are not applicable. For instance, the sequence , whose proper segmen-
tation is  |  |  | (president | both-of-them | business | general manager,
i.e., a president as well as a general manager of business), could be incorrectly seg-
mented as  |  |  | (president | subsidiary business | (the name) Tsutomu |
general manager); since both alternatives are four-noun sequences, they cannot be
distinguished by part-of-speech information alone.

An additional reason that accuracy on kanji sequences is an important aspect
of the total segmentation process is that they comprise a significant portion of
Japanese text, as shown in Figure 1. Since sequences of more than 3 kanji generally
consist of more than one word, at least 21.2% of 1993 Nikkei newswire consists
of kanji sequences requiring segmentation; and long sequences are the hardest to
segment (Takeda and Fujisaki, 1987).

As an alternative to lexico-syntactic and supervised approaches, we propose a
simple, efficient segmentation method, the tango algorithm, which learns mostly
from very large amounts of unsegmented training data, thus avoiding the costs
of encoding lexical or syntactic knowledge or hand-segmenting large amounts of
training data. Some key advantages of tango are:

• A very small number of pre-segmented training examples (as few as 5 in our
experiments) are needed for good performance.
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• For long kanji strings, the method produces results rivalling those produced
by Juman 3.61 (Kurohashi and Nagao, 1999) and Chasen 1.0 (Matsumoto et
al., 1997), two morphological analyzers in widespread use. For instance, we
achieve on average 5% higher word precision and 6% better morpheme recall.

• No domain-specific or even Japanese-specific rules are employed, enhancing
portability to other tasks and applications.

We stress that we explicitly focus on long kanji sequences, not only because
they are important, but precisely because traditional knowledge-based techniques
are expected to do poorly on them. We view our mostly-unsupervised algorithm
as complementing lexico-syntactic techniques, and envision in the future a hybrid
system in which our method would be applied to long kanji sequences and mor-
phological analyzers would be applied to other sequences for which they are more
suitable, so that the strengths of both types of methods can be integrated effectively.

1.1 Paper organization

This paper is organized as follows. Section 2 describes our mostly-unsupervised,
knowledge-lean algorithm. Section 3 describes the morphological analyzers Juman
and Chasen; comparison against these methods, which rely on large lexicons and
syntactic information, forms the primary focus of our experiments.

In Section 4, we give the details of our experimental framework, including the
evaluation metrics we introduced. Section 5 reports the results of our experiments.
In particular, we see in Section 5.1 that the performance of our statistics-based
algorithm rivals that of Juman and Chasen. In order to demonstrate the useful-
ness of the particular simple statistics we used, in Section 5.2 we show that our
algorithm substantially outperforms a method based on mutual information and
t-score, sophisticated statistical functions commonly used in corpus-based natural
language processing.

We discuss related work in section 6, and conclude in section 7.

2 The TANGO Algorithm

Our algorithm, tango (Threshold And maximum for N-Grams that Overlap1),
employs character n-gram counts drawn from an unsegmented corpus to make seg-
mentation decisions. We start by illustrating the underlying motivations, using the
example situation depicted in Figure 2: “A B C D W X Y Z” represents a sequence
of eight kanji characters, and the goal is to determine whether there should be a
word boundary between D and W.

The main idea is to check whether n-grams that are adjacent to the proposed
boundary, such as the 4-grams sL =“A B C D” and sR =“W X Y Z”, tend to be
more frequent than n-grams that straddle it, such as the 4-gram t1 = “B C D W”.
If so, we have evidence of a word boundary between D and W, since there seems to
be relatively little cohesion between the characters on opposite sides of this gap.

1 Also, (tan-go bun-katsu) is Japanese for “word segmentation”.
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Fig. 2. Collecting 4-gram evidence for a word boundary – are the non-straddling n-grams
sL and sR more frequent than the straddling n-grams t1, t2, and t3?

The n-gram orders used as evidence in the segmentation decision are specified by
the set N . For instance, our example in Figure 2 shows a situation where N = {4},
indicating that only 4-grams are to be used. We thus pose the six questions of the
form, “Is #(sd) > #(tj)?”, where #(x) denotes the number of occurrences of x in
the (unsegmented) training corpus, d ∈ {L,R}, and j ∈ {1, 2, 3}. If N = {2, 4}, then
two more questions (Is “#(C D) > #(D W)?” and “Is #(W X) > #(D W)?”) are
used as well. Each affirmative answer makes it more reasonable to place a segment
boundary at the location under consideration.

More formally, fix a location k and an n-gram order n, and let sn
L and sn

R be
the non-straddling n-grams just to the left and right of it, respectively. For j ∈
{1, 2, . . . , n− 1}, let tnj be the straddling n-gram with j characters to the right of
location k. We define I>(y, z) to be the indicator function that is 1 when y > z, and
0 otherwise — this function formalizes the notion of “question” introduced above.

tango works as follows. It first calculates the fraction of affirmative answers
separately for each n-gram order n in N , thus yielding a “vote” for that order n:

vn(k) =
1

2(n− 1)

∑

d∈{L,R}

n−1∑

j=1

I>(#(sn
d ), #(tnj )).

Note that in locations near the beginning or end of a sequence, not all the n-grams
may exist (e.g., in Figure 2, there is no non-straddling 4-gram to the left of the
A-B gap), in which case we only rely on comparisons between the existing relevant
n-grams — since we are dealing with long kanji sequences, each location will have
at least one n-gram adjacent to it and one n-gram straddling it, for reasonable
values of n.
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Fig. 3. Determining word boundaries. By the threshold criterion, a boundary should be
placed at the B-C, X-Y, and Y-Z gaps; by the local maximum criterion, a boundary should
be placed at the B-C, D-W, and Y-Z gaps. Hence, four boundaries are placed as shown.

Then, tango averages together the votes of each n-gram order:

vN (k) =
1
|N |

∑

n∈N

vn(k) .

Hence, vN (k), or “total vote”, represents the average amount of evidence, according
to the participating n-gram lengths, that there should be a word boundary placed
at location k.

After vN (k) is computed for every location, boundaries are placed at all locations
` such that either:

1. vN (`) > vN (`− 1) and vN (`) > vN (` + 1), or
2. vN (`) ≥ t, a threshold parameter.

That is, a segment boundary is created if and only if the total vote is either (1) a
local maximum, or (2) exceeds threshold t (see Figure 3). The second condition is
necessary for the creation of single-character words, since local maxima by definition
cannot be adjacent. Note that the use of a threshold parameter also allows a degree
of control over the granularity of the segmentation: low thresholds encourage shorter
segments.

One may wonder why we only consider comparisons between n-grams of the
same length. The underlying reason is that counts for longer n-grams can be more
unreliable as evidence of true frequency; that is, the sparse data problem is worse
for higher-order n-grams. Because they are potentially unreliable, we do not want
longer n-grams to dominate the segmentation decision; but since there are more
overlapping higher-order n-grams than lower-order ones, we compensate by treating
the different orders separately. Furthermore, counts for longer n-grams tend to be
smaller than for shorter ones, so it is not clear that directly comparing counts for
different-order n-grams is meaningful. One could use some sort of normalization
technique, but one of our motivations was to come up with as simple an algorithm
as possible.2

While of course we do not make any claims that this method has any psycho-
logical validity, it is interesting to note that recent studies (Saffran, Aslin, and
Newport, 1996; Saffran, 2001) have shown that infants can learn to segment words
in fluent speech based only on the statistics of neighboring syllables. Such research

2 While simplicity is itself a virtue, an additional benefit to it is that having fewer variables
reduces the need for parameter-training data.
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lends credence to the idea that simple co-occurrence statistics contain much useful
information for our task.

2.1 Implementation Issues

In terms of implementation, both the count acquisition phase (which can be done
off-line) and the testing phase are efficient. Computing n-gram statistics for all
possible values of n simultaneously can be done in O(m log m) time using suffix
arrays, where m is the training corpus size (Manber and Myers, 1993; Nagao and
Mori, 1994; Yamamoto and Church, 2001).3 However, if the set N of n-gram or-
ders is known in advance, conceptually simpler algorithms suffice. For example, we
implemented an O(m log m) procedure that explicitly stores the n-gram counts in
a table. (Memory allocation for count tables can be significantly reduced by omit-
ting n-grams occurring only once and assuming the count of unseen n-grams to be
one. For instance, the kanji n-gram table for N = {2, 3, 4, 5, 6} extracted from our
150-megabyte corpus was 18 megabytes in size, which fits easily in memory.) In the
application phase, tango’s running time is clearly linear in the test corpus size if
|N | is treated as a constant, since the algorithm is quite simple.

We observe that some pre-segmented data is necessary in order to set the param-
eters N and t. However, as described below, very little such data was required to get
good performance; we therefore deem our algorithm to be “mostly unsupervised”.

3 Morphological Analyzers: Chasen and Juman

In order to test the effectiveness of tango, we compared it against two different
types of methods, described below. The first type, and our major “competitor”,
is the class of morphological analyzers, represented by Chasen and Juman – our
primary interest is in whether the use of large amounts of unsupervised data can
yield information comparable to that of human-developed grammars and lexicons.
(We also compared tango against the mostly-unsupervised statistical algorithm
developed by Sun et al. (1998), described in Section 5.2.1.)

Chasen 1.04 (Matsumoto et al., 1997) and Juman 3.615 (Kurohashi and Nagao,
1999) are two state-of-the-art, publically-available, user-extensible systems. In our
experiments, the grammars of both systems were used as distributed (indeed, they
are not particularly easy to make additions to; creating such resources is a difficult
task). The sizes of Chasen’s and Juman’s default lexicons are approximately 115,000
and 231,000 words, respectively.

An important question that arose in designing our experiments was how to enable
morphological analyzers to make use of the parameter-training data that tango had
access to, since the analyzers do not have parameters to tune. The only significant

3 Nagao and Mori (1994) and Yamamoto and Church (2001) use suffix arrays in the
service of unsupervised term extraction, which is somewhat related to the segmentation
problem we consider here.

4 http://cactus.aist-nara.ac.jp/lab/nlt/chasen.html
5 http://pine.kuee.kyoto-u.ac.jp/nl-resource/juman-e.html
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way that they can be updated is by changing their grammars or lexicons, which is
quite tedious (for instance, we had to add part-of-speech information to new entries
by hand). We took what we felt to be a reasonable, but not too time-consuming,
course of creating new lexical entries for all the bracketed words in the parameter-
training data (see Section 4.2). Evidence that this was appropriate comes from the
fact that these additions never degraded test set performance, and indeed improved
it in some cases. Furthermore, our experiments showed that reducing the amount
of training data hurt performance (see Section 5.3), indicating that the information
we gave the analyzers from the segmented training data is useful.

It is important to note that in the end, we are comparing algorithms with access
to different sources of knowledge. Juman and Chasen use lexicons and grammars
developed by human experts. Our algorithm, not having access to such pre-compiled
knowledge bases, must of necessity draw on other information sources (in this case,
a very large unsegmented corpus and a few pre-segmented examples) to compensate
for this lack. Since we are interested in whether using simple statistics can match the
performance of labor-intensive methods, we do not view these information sources
as conveying an unfair advantage, especially since the annotated training sets were
small, available to the morphological analyzers, and disjoint from the test sets.

4 Experimental Framework

In this section, we describe our experimental setup. Section 4.1 gives details on
the data we used and how training proceeded. Section 4.2 presents the annotation
policies we followed to segment the test and parameter-training data. Section 4.3
describes the evaluation measures we used; these include fairly standard measures,
such as precision and recall, and novel measures, based on the notion of compatible
brackets, that we developed to overcome some of the shortcomings of the standard
measures in the case of evaluating segmentations.

4.1 Data and Training Procedures

Our experimental data was drawn from 150 megabytes of 1993 Nikkei newswire;
Figure 1 gives some statistics on this corpus. Five 500-sequence held-out subsets
were obtained from this corpus for parameter training and algorithm testing; the
rest of the data served as the unsegmented corpus from which we derived char-
acter n-gram counts. The five subsets were extracted by randomly selecting kanji
sequences of at least ten characters in length – recall from our discussion above
that long kanji sequences are the hardest to segment (Takeda and Fujisaki, 1987).
As can be seen from Figure 4, the average sequence length was around 12 kanji.
The subsets were then annotated following the segmentation policy outlined in Sec-
tion 4.2 below; as Figure 4 shows, the average word length was between two and
three kanji characters. Finally, each of these five subsets was randomly split into
a 50-sequence parameter-training set and a 450-sequence test set. Any sequences
occurring in both a test set and its corresponding parameter-training set were dis-
carded from the parameter-training set in order to guarantee that these sets were
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average sequence length number of words average word length
test1 12·27 2554 2·40
test2 12·40 2574 2·41
test3 12·05 2508 2·40
test4 12·12 2540 2·39
test5 12·22 2556 2·39

Fig. 4. The statistics of the five held-out datasets. Lengths are in characters.

disjoint (recall that we are especially interested in the unknown word problem);
typically, no more than five sequences needed to be removed.

Parameter training for our algorithm consisted of trying all nonempty subsets of
{2, 3, 4, 5, 6} for thetango set of n-gram orders N and all values in {.05, .1, .15, . . . , 1}
for the threshold t. In cases where two parameter settings gave the same training-set
performance, ties were deterministically broken by preferring smaller cardinalities
of N , shorter n-grams in N , and larger threshold values, in that order.

The results for Chasen and Juman reflect the lexicon additions described in
Section 3.

4.2 Annotation Policies for the Held-Out Sets

To obtain the gold-standard annotations, the five held-out sets were segmented by
hand. This section describes the policies we followed to create the segmentations.
Section 4.2.1 gives an overview of the basic guidelines we used. Section 4.2.2 goes
into further detail regarding some specific situations in Japanese.

4.2.1 General policy

The motivation behind our annotation policy is Takeda and Fujisaki’s (1987) ob-
servation that many kanji compound words consist of two-character stem words to-
gether with one-character prefixes and suffixes. To handle the question of whether
affixes should be treated as separate units or not, we devised a two-level bracketing
scheme, so that accuracy can be measured with respect to either level of granu-
larity without requiring re-annotation. At the word level, stems and their affixes
are bracketed together as a single unit. At the morpheme level, stems are divided
from their affixes. For example, the sequence (telephone) would have the
segmentation [[ ][ ]] ([[phone][device]]) because (phone) can occur on its
own, but (-device) can appear only as an affix.

We observe that both the word level and the morpheme level are important
in their own right. Loosely speaking, word-level segments correspond to discourse
entities; they appear to be a natural unit for native Japanese speakers (see next
paragraph), and seem to be the right granularity for document indexing, question
answering, and other end applications. On the other hand, morpheme-level brackets
correspond to strings that cannot be further divided without loss of meaning — for
instance, if one segments into (electricity) and (speech), the meaning of
the phrase becomes quite different. Wu (1998) argues that indivisible units are the
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proper output of segmentation algorithms; his point is that segmentation should be
viewed as a pre-processing step that can be used for many purposes.

Three native Japanese speakers participated in the annotation process: one (the
first author) segmented all the held-out data based on the above rules, and the
other two reviewed6 350 sequences in total. The percentage of agreement with the
first person’s bracketing was 98.42%: only 62 out of 3927 locations were contested
by a verifier. Interestingly, all disagreement was at the morpheme level.

4.2.2 Special situations

It sometimes happens that a character that can occur on its own serves as an affix in
a particular case. Our decision was to annotate such characters based on their role.
For example, although both (Nagano) and (city) can appear as individual
words, (the city of Nagano) is bracketed as [[ ][ ]] , since here serves
as a suffix. As a larger example, here is the annotation of a full sequence appearing
in our datasets:

[ ][ ][[ ][ ]][ ]

([elementary school][building interior][[sports][area]][construction], i.e. construction of

an elementary-school indoor arena). Each bracket encloses a noun. Here, is treated
as an affix and thus bracketed as a morpheme, although it can also appear as an
independent word as well. On the other hand, has not been placed in its own
segment even though it is by itself also a word (small) – otherwise, we would get
small school rather than the intended elementary school.

Numeric strings (i.e., sequences containing characters denoting digits) such as
(one-nine-nine-three-year, the year 1993), are another grey area. In fact,

Chasen and Juman appear to implement different segmentation policies with re-
spect to this type of character sequence. The issue arises not just from the digit
characters (should each one be treated as an individual segment, or should they
be aggregated together?), but also classifiers. In Japanese, classifiers are required
after numbers to indicate the unit or type of the quantity. That is, one must say

(transfer7-car-three-ten-〈car-unit〉, thirty imported cars); omitting the
classifier so as to literally say “thirty imported cars” (* ) is not permissi-
ble.

Our two-level bracketing scheme makes the situation relatively easy to handle.
In our annotations, the word level forms a single unit out of the digit characters
and subsequent classifier. At the morpheme level, the characters representing the
actual number are treated as a single unit, with the classifier serving as suffix. For in-
stance, is segmented as [[ ][ ]] ([[one-nine-nine-three][year]]). Also,
to even out the inconsistencies of the morphological analyzers in their treatment of
numerics, we altered the output of all the algorithms tested, including our own, so
as to conform to our bracketing; hence, our numerics segmentation policy did not

6 We did not ask the other two to re-annotate the data from scratch because of the tedium
of the segmentation task.

7 This word is two kanji characters long.
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Word errors Morpheme errors Compatible-bracket errors:
(prec.,recall) (prec.,recall) Crossing Morpheme-dividing

[[data][base]][system] - - - -
|database|system| 0,0 1,2 0 0
|data|base|system| 2,1 0,0 0 0
|data|basesystem| 2,2 1,2 1 0
|database|sys|tem| 2,1 3,3 0 2

Fig. 5. Examples illustrating segmentation errors. The first line gives the annotation seg-
mentation: because “data base” and “database” are interchangeable, we have the segmen-
tation “[[data][base]]”. The word and morpheme columns enumerate both precision and
recall errors. For example, the last line commits two word precision errors because neither
“sys” nor “tem” are annotated as words. The one word recall error comes from missing
“system”.

affect the relative performance of the various methods. Since in practice it is easy
to implement a post-processing step that concatenates together number kanji, we
do not feel that this change misrepresents the performance of any of the algorithms.
Indeed, in our experience the morphological analyzers tended to over-segment nu-
meric sequences, so this policy is in some sense biased in their favor.

4.3 Evaluation Metrics

We used a variety of evaluation metrics in our experiments. These include the
standard metrics of word precision, recall, and F measure; and morpheme precision,
recall, and F measure. Furthermore, we developed two novel metrics, the compatible
brackets and all-compatible brackets rates, which combine both levels of annotation
brackets.

4.3.1 Word and morpheme precision, recall, and F

Precision and recall are natural metrics for word segmentation. Treating a pro-
posed segmentation as a non-nested bracketing (e.g., “|AB|C|” corresponds to the
bracketing “[AB][C]”), word precision (P ) is defined as the percentage of proposed
brackets that exactly match word-level brackets in the annotation; word recall (R)
is the percentage of word-level annotation brackets that are proposed by the al-
gorithm in question; and word F combines precision and recall via their harmonic
mean: F = 2PR/(P + R). See Figure 5 for some examples of word precision and
recall errors.

The morpheme metrics are all defined analogously to their word counterparts.
See Figure 5 for examples of morpheme precision and recall errors.
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4.3.2 Compatible-brackets and all-compatible brackets rates

Word-level and morpheme-level accuracy are natural performance metrics. How-
ever, they are clearly quite sensitive to the test annotation, which is an issue if
there are ambiguities in how a sequence should be properly segmented. According
to Section 4.2, there was 100% agreement among our native Japanese speakers on
the word level of segmentation, but there was a little disagreement at the morpheme
level. Also, the authors of Juman and Chasen may have constructed their default
dictionaries using different notions of word and morpheme than the definitions we
used in annotating the data. Furthermore, the unknown word problem leads to
some inconsistencies in the morphological analyzers’ segmentations. For instance,
well-known university names are treated as single segments by virtue of being in
the default lexicon, whereas other university names are divided into the name and
the word “university”.

We therefore developed two more robust metrics, adapted from measures in the
parsing literature, that penalize proposed brackets that would be incorrect with re-
spect to any reasonable annotation. These metrics account for two types of errors.
The first, a crossing bracket, is a proposed bracket that overlaps but is not contained
within an annotation bracket (Grishman, Macleod, and Sterling, 1992). Crossing
brackets cannot coexist with annotation brackets, and it is unlikely that another
human would create them.8 The second type of error, a morpheme-dividing bracket,
subdivides a morpheme-level annotation bracket; by definition, such a bracket re-
sults in a loss of meaning. See Figure 5 for some examples of these types of errors.

We define a compatible bracket as a proposed bracket that is neither crossing nor
morpheme-dividing. The compatible brackets rate is simply the compatible brackets
precision, i.e., the percent of brackets proposed by the algorithm that are compat-
ible brackets. Note that this metric accounts for different levels of segmentation
simultaneously.

We also define the all-compatible brackets rate, which is the fraction of sequences
for which all the proposed brackets are compatible. Intuitively, this function mea-
sures the ease with which a human could correct the output of the segmentation
algorithm: if the all-compatible brackets rate is high, then the errors are concen-
trated in relatively few sequences; if it is low, then a human doing post-processing
would have to correct many sequences.

It is important to note that neither of the metrics based on compatible brackets
should be directly optimized in training, because an algorithm that simply brack-
ets an entire sequence as a single word will be given a perfect score. Instead, we
apply it only to measure the quality of test results derived by training to optimize
some other criterion. Also, for the same reason, we only compare brackets rates
for algorithms with reasonably close precision, recall, and/or F measure. Thus, the
compatible brackets rates and all-compatible brackets rates should be viewed as
auxiliary goodness metrics.

8 The situation is different for parsing, where attachment decisions are involved.
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Fig. 6. Word accuracy, Chasen and Juman vs. tango. The three rightmost groups show
tango’s performance when parameters were tuned for different optimization criteria.

5 Experimental Results

We now report average results for all the methods over the five test sets using the
optimal parameter settings for the corresponding training sets. In all performance
graphs, the “error bars” represent one standard deviation.

The section is organized as follows. We first present our main experiment, re-
porting the results of comparison of tango to Chasen and Juman (Section 5.1).
We see that our mostly-unsupervised algorithm is competitive with and sometimes
surpasses their performance. Since these experiments demonstrate the promise of
using a purely statistical approach, Section 5.2 describes our comparison against
another mostly-unsupervised algorithm, sst (Sun, Shen, and Tsou, 1998). These
experiments show that our method, which is based on very simple statistics, can
substantially outperform methods based on more sophisticated functions such as
mutual information. Finally, Section 5.3 goes into further discussion and analysis.

5.1 Comparison Against Morphological Analyzers

5.1.1 Word and morpheme accuracy results

To produce word-level segmentations from Juman and Chasen, we altered their
output by concatenating stems with their affixes, as identified by the part-of-speech
information the analyzers provided.

Figure 6 shows word accuracy for Chasen, Juman, and our algorithm for parame-
ter settings optimizing word precision, recall, and F-measure rates. As can be seen,
in this case the choice of optimization criterion did not matter very much. tango

achieves more than five percentage-points higher precision than Juman and Chasen.
tango’s recall performance is also respectable in comparison to the morphological
analyzers, falling (barely) between that of Juman and that of Chasen. Combined
performance, as recorded by the F-measure, was about the same as Juman, and
4.22 percentage points higher than Chasen.
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Fig. 7. Morpheme accuracy, Chasen and Juman vs. tango.

We also measured morpheme precision, recall, and F measure, all defined analo-
gously to their word counterparts. Figure 7 shows the results. Unlike in the word
accuracy case, the choice of training criterion clearly affected performance.

We see that tango’s morpheme precision was slightly lower than that of Chasen,
and noticeably worse than for Juman. However, when we optimize for precision, the
results for all three metrics are on average quite close to Chasen’s. tango’s recall
results are substantially higher than for the morphological analyzers when recall was
its optimization criterion. In terms of combined performance, tuning our algorithm
for the F-measure achieves higher F-measure performance than Juman and Chasen,
with the performance gain due to enhanced recall.

Thus, overall, we see that our method yields results rivalling those of morpho-
logical analyzers.

5.1.2 Compatible brackets results

Figure 8 depicts the compatible brackets and all-compatible brackets rates for
Chasen, Juman, and tango, using the three word accuracy metrics as training
criteria for our method. tango does better on the compatible brackets rate and
the all-compatible brackets rates than the morphological analyzers do, regardless
of training optimization function used.

The results degrade if morpheme accuracies are used as training criteria, as
shown in Figure 9. Analysis of the results shows that most of the errors come
from morpheme-dividing brackets: the parameters optimizing morpheme recall and
F-measure are N = {2} and t = .5, which leads to a very profligate policy in
assigning boundaries.

5.1.3 Discussion

Overall, we see that our algorithm performs very well with respect to the mor-
phological analyzers when word accuracies are used for training. At the morpheme
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Fig. 9. Compatible and all-compatible brackets rates, morpheme-accuracy training.

level, the relative results for our algorithm in comparison to Chasen and Juman
are mixed; recall and F are generally higher, but at the price of lower compatible
brackets rates. The issue appears to be that single-character segments are common
at the morpheme level because of affixes. The only way our algorithm can create
such segments is by the threshold value, but too low a threshold causes precision
to drop.

A manual (and quite tedious) analysis of the types of errors produced in the
first test set reveals that the major errors our algorithm makes are mis-associating
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affixes (e.g., wrongly segmenting [ ][[ ][ ]] as [ ][ ] ) and fusing single-
character words to their neighbors (e.g. wrongly segmenting [ ][ ][ ] as
[ ][ ] ). Both of these are mistakes involving single characters, a problem
just discussed. Another common error was the incorrect concatenation of family
and given names, but this does not seem to be a particularly harmful error. On the
other hand, the morphological analyzers made many errors in segmenting proper
nouns, which are objects of prime importance in information extraction and related
tasks, whereas our algorithm made far fewer of these mistakes.

In general, we conclude that tango produces high-quality word-level segmenta-
tions rivaling and sometimes outperforming morphological analyzers, and can yield
morpheme accuracy results comparable to Chasen, although the bracket-metrics
quality of the resultant morpheme-level segmentations is not as good. The algo-
rithm does not fall prey to some of the problems in handling proper nouns that
lexico-syntactic approaches suffer. Developing methods for improved handling of
single-character morphemes would enhance the method, and is a direction for fu-
ture work.

5.2 Comparison against sst

We further evaluated our algorithm by comparing it against another mostly-unsuper-
vised algorithm: that of Sun, Shen, and Tsou (1998) (henceforth sst), which, to
our knowledge, is the segmentation technique most similar to the one we have pro-
posed. Our goal in these experiments was to investigate the null hypothesis that
any reasonable n-gram-based method could yield results comparable to Chasen and
Juman.

sst also performs segmentation without using a grammar, lexicon, or large amounts
of annotated training data; instead, like tango, it relies on statistics garnered from
an unsegmented corpus. Although Sun et al. implemented their method on Chinese
(which also lacks space delimiters) instead of Japanese, they designed sst to be
able to account for “two common construction types in Chinese word formation: ‘2
characters + 1 character’ and ‘1 character + 2 characters” (pg. 1269). As pointed
out in Section 4.2.1 above, Japanese kanji compound words often have a similar
structure (Takeda and Fujisaki, 1987); hence, we can apply sst to kanji as well,
after appropriate parameter training.

5.2.1 The sst Algorithm

Like our algorithm, sst seeks to determine whether a given location constitutes a
word boundary by looking for evidence of cohesion (or lack thereof) between the
characters bordering the location. Recall the situation described by Figure 2: we
have the character sequence “A B C D W X Y Z”, and must decide whether the
location between D and W should be a boundary. The evidence sst uses comes from
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two sources. The first is the (pointwise or Fano) mutual information9 between D and
W: mi(D, W) = log(p(D, W)/(p(D)p(W))) . The other statistic is the difference in
t-score (Church and Hanks, 1990) for the two trigrams CDW and DWX straddling
the proposed boundary:

dts(D, W) =
p(W|D)− P (D|C)√

var(p(W|D)) + var(p(D|C))
− p(X|W)− P (W|D)√

var(p(X|W)) + var(p(W|D))

Note that both the mutual information and the difference in t-score can be com-
puted from character bigram statistics alone, as gathered from an unsegmented
corpus.

Segmentation decisions are made based on a threshold θ on the mutual infor-
mation, and on thresholds for the first and secondary local maxima and minima
of the difference in t-score. There are six such free extremum parameters. In addi-
tion, we treated θ as another free parameter in our re-implementation; Sun et al.
simply set it to the same value (namely, 2.5) that Sproat and Shih (1990)) used.
These seven parameters together yield a rather large parameter search space. For
our implementation of the parameter training phase (Sun et al.’s paper does not
give details), we set each of the six extremum thresholds10 to all the values in the
set {0, 50, 100, 150, 200} and the mutual information threshold11 to all values in the
set {0, 1.25, 2.5, 3.75, 5}. Ties in training set performance — which were plentiful in
our experiments — were broken by choosing smaller parameter values. We used the
same count tables (i.e. with singleton n-grams deleted and unseen n-grams given a
count of one) as for tango.

While local extrema and thresholds also play a important role in our method, we
note that sst is considerably more complex than the algorithm we have proposed.
Also observe that it makes use of conditional probabilities, whereas we simply com-
pare frequencies.

5.2.2 sst Results

Figures 10 and 11 show the word and morpheme accuracy results.12 Clearly, sst

does not perform as well as Juman at either level of segmentation granularity. Since

9 This function (and its more probabilistically-motivated cousin the Shannon or average
mutual information (Cover and Thomas, 1991)) has a long and distinguished history in
natural language processing. In particular, it has been used in other segmentation algo-
rithms (Sproat and Shih, 1990; Wu and Su, 1993; Lua, 1995); interestingly, Magerman
and Marcus (1990) also used a variant of the mutual information to find constituent
boundaries in English.

10 The values to be thresholded are defined to be non-negative.
11 It is the case that the pointwise mutual information can take on a negative value, but

this indicates that the two characters occur together less often than would be expected
under independence assumptions. Therefore, since the threshold is used to determine
locations that should not be boundaries, non-negative thresholds suffice.

12 Church and Hanks (1990) actually suggested using two different ways to estimate the
probabilities used in the t-score: the maximum likelihood estimate (MLE) and the ex-
pected likelihood estimate (ELE). According to Sun (personal communication), the MLE
was used in the original implementation, although Church and Hanks suggested that
the ELE would be better. We experimented with both, finding that they gave generally
similar results. For consistency with Sun et al.’s experiments, we plot the MLE results
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Fig. 10. Word accuracy, Juman vs. tango vs. sst.

the accuracy results are so much lower than the other algorithms, we do not apply
the brackets metrics, for the reasons discussed above.

It is clear that our algorithm outperforms sst, even though sst uses much
more sophisticated statistics. Note that we incorporate n-grams of different orders,
whereas sst essentially relies only on character bigrams, so at least some of the
gain may be due to our using more sources of information from the unsegmented
training corpus. We do not regard this as an unfair advantage because incorporating
higher-order n-grams is easy to do for our method, and adds no conceptual over-
head, whereas extending the mutual information to trigrams and larger n-grams
can be a complex procedure (Magerman and Marcus, 1990).

Stepping back, though, we note that our goal is not to emphasize the comparison
with the particular algorithm sst, especially since it was developed for Chinese
rather than Japanese. Rather, what we conclude from these experiments is that
it is not necessarily easy for weakly-supervised statistical algorithms to do as well
as morphological analyzers, even if they are given large amounts of unsegmented
data as input and even if they employ well-known statistical functions. This finding
further validates the tango algorithm.

only. The only case in which using the ELE rather than the MLE made a substantial
difference was in morpheme precision, which improved by five percentage points (not
enough to change the relative performance rankings).
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Fig. 11. Morpheme accuracy, Juman vs. tango vs. sst.

5.3 Further Explorations

Given tango’s good performance in comparison to Chasen and Juman, we exam-
ined the role of the amount of parameter-training data tango is given as input,
and investigated the contributions of the algorithm’s two parameters.

5.3.1 Minimal human effort is needed.

In contrast to our mostly-unsupervised method, morphological analyzers need a
lexicon and grammar rules built using human expertise. The workload in creating
dictionaries on the order of hundreds of thousands of words (the size of Chasen’s
and Juman’s default lexicons) is clearly much larger than annotating the small
parameter-training sets for our algorithm. tango also obviates the need to segment
a large amount of parameter-training data because our algorithm draws almost
all its information from an unsegmented corpus. Indeed, the only human effort
involved in our algorithm is pre-segmenting the five 50-sequence parameter training
sets, which took only 42 minutes.13 In contrast, previously proposed supervised
approaches to Japanese segmentation have used annotated training sets ranging
from 1000-5000 sentences (Kashioka et al., 1998) to 190,000 sentences (Nagata,
1996a).

To test how much annotated training data is actually necessary, we experimented
with using miniscule parameter-training sets: five sets of only five strings each (from

13 Annotating all the test data for running comparison experiments takes considerably
longer.
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tango (50) tango (5) Juman (5) tango (5) tango (5)
vs. vs. vs. vs. vs.

Juman (50) Juman (5) Juman (50) tango (50) Juman (50)

precision +5·27 +6·18 -1·04 -0·13 +5·14
recall -4·39 -3·73 -0·63 +0·03 -4·36
F-measure +0·26 +1·14 -0·84 +0·04 +0·30

Fig. 12. Average relative word accuracy as a function of training set size. “5” and “50”
denote training set size before discarding overlaps with the test sets.

which any sequences repeated in the test data were discarded). It took only 4
minutes to perform the hand segmentation in this case.

Figure 12 shows the results. For instance, we see that training tango on five
training sequences yielded 6.18 percentage points higher precision than using Ju-
man with the same five training sequences; thus, our algorithm is making very
efficient use of even very small training sets. The third data column proves that the
information we provide Juman from the annotated training data does help, in that
using smaller training sets results in lower performance. According to the fourth
data column, performance doesn’t change very much if our algorithm gets only five
training sequences instead of 50. Interestingly, the last column shows that if our
algorithm has access to only five annotated sequences when Juman has access to
ten times as many, we still achieve better precision and comparable F-measure.

5.3.2 Both the local maximum and threshold conditions contribute.

Recall that in our algorithm, a location k is deemed a word boundary if the evidence
vN (k) is either (1) a local maximum or (2) at least as big as the threshold t. It is
natural to ask whether we really need two conditions, or whether just one would
suffice.14 For instance, while t is necessary for producing single-character segments,
perhaps it also causes many recall errors, so that performance is actually better
when the threshold criterion is ignored.

We therefore studied whether optimal performance could be achieved using only
one of the conditions. Figure 13 shows that in fact both contribute to producing
good segmentations. Indeed, in some cases, both are needed to achieve the best
performance; also, each condition when used in isolation yields suboptimal perfor-
mance with respect to some performance metrics.

14 Goldsmith (2001) notes that the “peaks vs. threshold” question (for different functions)
has arisen previously in the literature on morphology induction for European languages;
see page 158 of that paper for a short summary.
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M     : best performance achieved using only local Maximum condition.
T      : best performance achieved using only Threshold condition.
M&T: both conditions are needed.
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Fig. 13. Entries indicate whether best performance is achieved using the local maximum
condition (M), the threshold condition (T), or both.

6 Related Work

6.1 Japanese Segmentation

Many previously proposed segmentation methods for Japanese text make use of
either a pre-existing lexicon (Yamron et al., 1993; Matsumoto and Nagao, 1994;
Takeuchi and Matsumoto, 1995; Nagata, 1997; Fuchi and Takagi, 1998) or a sub-
stantial amount of pre-segmented training data (Nagata, 1994; Papageorgiou, 1994;
Nagata, 1996a; Kashioka et al., 1998; Mori and Nagao, 1998; Ogawa and Matsuda,
1999). Other approaches bootstrap from an initial segmentation provided by a
baseline algorithm such as Juman (Matsukawa, Miller, and Weischedel, 1993; Ya-
mamoto, 1996).

Unsupervised, non-lexicon-based methods for Japanese segmentation do exist,
but often have limited applicability when it comes to kanji. Both Tomokiyo and
Ries (1997) and Teller and Batchelder(1994) explicitly avoid working with kanji
characters. Takeda and Fujisaki (1987) propose the short unit model, a type of Hid-
den Markov Model with linguistically-determined topology, for segmenting certain
types of kanji compound words; in our five test datasets, we found that 13.56% of
the kanji sequences contain words that the short unit model cannot handle.

Ito and Kohda’s (1995) completely unsupervised statistical algorithm extracts
high-frequency character n-grams as pseudo-lexicon entries; a standard segmenta-
tion algorithm is then used on the basis of the induced lexicon. But the segments
so derived are only evaluated in terms of perplexity and intentionally need not be
linguistically valid, since Ito and Kohda’s interest is not in word segmentation but
in language modeling for speech.
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6.2 Chinese Segmentation

There are several varieties of statistical Chinese segmentation algorithms that do
not rely on syntactic information or a lexicon, and hence could potentially be applied
to Japanese. One vein of work relies on the mutual information (Sproat and Shih,
1990; Lua and Gan, 1994); sst can be considered a more sophisticated variant of
these since it also incorporates t-scores. There are also algorithms that leverage pre-
segmented training data (Palmer, 1997; Dai, Loh, and Khoo, 1999; Teahan et al.,
2000; Brent and Tao, 2001).15 Finally, the unsupervised, knowledge-free algorithms
of Ge, Pratt, and Smyth (1999) and Peng and Schuurmans (2001) both require
use of the EM algorithm to derive the most likely segmentation; in contrast, our
algorithm is both simple and fast.

7 Conclusion

In this paper, we have presented tango, a simple, mostly-unsupervised algorithm
that segments Japanese sequences into words based on statistics drawn from a large
unsegmented corpus. We evaluated performance on kanji with respect to several
metrics, including the novel compatible brackets and all-compatible brackets rates,
and found that our algorithm could yield performances rivaling that of lexicon-based
morphological analyzers. Our experiments also showed that a similar previously-
proposed mostly-unsupervised algorithm could not yield comparable results.

Since tango learns effectively from unannotated data, it represents a robust algo-
rithm that is easily ported to other domains and applications. We view this research
as a successful application of the (mostly) unsupervised learning paradigm: high-
quality information can be extracted from large amounts of raw data, sometimes
by relatively simple means.

On the other hand, we are by no means advocating a purely statistical approach
to the Japanese segmentation problem. We have explicitly focused on long sequences
of kanji as being particularly problematic for morphological analyzers such as Ju-
man and Chasen, but these analyzers are well-suited for other types of sequences.
We thus view our method, and mostly-unsupervised algorithms in general, as com-
plementing knowledge-based techniques, and conjecture that hybrid systems that
rely on the strengths of both kinds of methods will prove to be the most effective
in the future.
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