
Adding the Everywhere Operator to

Propositional Logic

David Gries∗ and Fred B. Schneider†

Computer Science Department, Cornell University
Ithaca, New York 14853 USA

September 25, 2002

Abstract

Sound and complete modal propositional logic C is presented, in which �P has the
interpretation “ P is true in all states”. The interpretation is already known as the
Carnapian extension of S5. A new axiomatization for C provides two insights. First,
introducing an inference rule textual substitution allows seamless integration of the
propositional and modal parts of the logic, giving a more practical system for writing
formal proofs. Second, the two following approaches to axiomatizing a logic are shown
to be not equivalent: (i) give axiom schemes that denote an infinite number of axioms
and (ii) write a finite number of axioms in terms of propositional variables and introduce
a substitution inference rule.

1 Introduction

Logic gives a syntactic way to derive or certify truths that can be expressed in the language
of the logic. The expressiveness of the language impacts the logic’s utility —the more
expressive the language, the more useful the logic (at least if the intended use is to prove
theorems, as opposed to, say, studying logics). We wish to calculate with logic, much as one
calculates in algebra to derive equations, and we find it useful for �P to be a formula of
the logic and have the meaning “ P is true in all states”.

When a propositional logic extended with � is further extended to predicate logic and
then to other theories, the logic can be used for proving theorems that could otherwise be

∗Supported by NSF grant CDA-9214957 and ARPA/ONR grant N00014-91-J-4123.
†Supported in part by ARPA/NSF grant CCR-9014363, NASA/ARPA grant NAG-2-893, and AFOSR

grant F49620-94-1-0198.

1

handled only at the metalevel, and most likely informally. For example, the statement

P is valid iff ∀x.P is valid(1)

is formalized in our logic as �P ≡ �(∀x.P) . In contrast, formalizing (1) as the two
inference rules

� P −→ � ∀x . P and � ∀x . P −→ � P

demotes it to a meta-logical notion. When the equivalence of P and ∀x.P is not expressible
by a formula of the logic, it is not directly available for use in calculational reasoning.

As another example, the following fact about set theory,1

{x Q} = {x R} is valid iff Q ≡ R is valid ,

is formalized using � as

�({x Q} = {x R}) ≡ �(Q ≡ R) ,

but it cannot be formalized as a formula without something like � .

The use of the everywhere operator �P was introduced to researchers in the formal
development of programs by Dijkstra (using the notation [P]) in the early 1980’s (see
e.g. [5, 4]). It can be used to formalize the Hoare triple {P} S {Q} , with the meaning
“execution of statement S begun in a state in which P is true is guaranteed to terminate
in a state in which Q is true .” [10]. Using weakest-precondition predicate transformer wp
[3], we define:

{P} S {Q} : �(P ⇒ wp(S, Q)) .

Modal logic2 S5 includes �P among its formulas. As is well known, S5 is not complete
with respect to model C, which consists of all states (total functions from the set of all
propositional variables to {t, f} , with the conventional definition of evaluation), where
every state is accessible from every other state. For example, the formula ¬�p for p a
propositional variable is valid with respect this model, but it is not a theorem of S5.

A number of sound an complete axiomatizations for C are known [13, 2, 1, 11, 9], dating
from as early as 1973 —see Gottlob’ survey [6]. In Sec. 3, we give a new axiomatization for
C, compare it with previous ones, and argue why we believe the new axiomatization is more
suitable for actually writing formal proofs.

The axiomatization presented in Sec. 3 uses an infinite number of axioms, specified by
a finite set of axiom schemes. In Sec. 4 we present an axiomatization C′ that has a finite

1We use ≡ for equality over the booleans and = for equality over any type.
2See Hughes and Cresswell [12] for an introduction to modal logic.

2

Table 1: Table of abbreviations

α ∧ β : ¬(¬α ∨ ¬β) true : p ≡ p
α ⇒ β : ¬α ∨ β false : ¬true
α ≡ β : (α ⇒ β) ∧ (β ⇒ α) �α : ¬�¬α

number of axioms. We show that such a finite axiomatization cannot be obtained simply by
replacing the metavariables of the axiom schemes of C of Sec. 3 by propositional variables
and adding inference rule Uniform Substitution. This, then demonstrates that the two
approaches to axiomatizing a logic are not necessarily equivalent.

2 Preliminaries

Let VP be a set of propositional variables. We use lower-case letters p, q, r, . . . for elements
of VP . A formula of S5 has one of the following forms (p is any variable in VP , and
metavariables α , β stand for formulas).

p (¬α) (α ∨ β) (�α)(2)

In addition, (α ∧ β) , (α ⇒ β) , (α ≡ β) , �α , true , and false are abbreviations of
certain formulas, as shown in Table 1. (Operator � is read as “possibly” or “somewhere”.)
Precedences eliminate the need for some parentheses; prefix operators ¬ , � , and � bind
tightest, then ∨ and ∧ , then ⇒ , and finally ≡ .

A formula of S5 that contains neither � nor � is called a propositional formula.

A model is a triple 〈W, R, V 〉 in which:

• W is a nonempty set of worlds.

• R is an accessibility relation, a binary relation over W : w R u signifies that world
u is accessible from world w .

• V (α, w) , for α a formula and w a world in W , is a value assignment that satisfies
the following properties:

V (p, w) is either t or f (for p a variable in VP),
V (¬α, w) = if V (α, w) = t then f else t ,
V (α ∨ β, w) = if V (α, w) = t then t else V (β, w) ,
V (�α, w) = if V (α, u) = t for all worlds u such that w R u then t else f .

(3)

An S5-model is a model 〈W, R, V 〉 in which R is an equivalence relation —reflexive,
transitive, and symmetric. An S5-formula α is S5-valid , written |=S5 α , iff for every S5-

3

Table 2: Schematic PM, S5, and S5c

PM: Modus Ponens: � α, � (α ⇒ β) −→ � β
Axiom scheme A1: α ∨ α ⇒ α
Axiom scheme A2: α ⇒ α ∨ β
Axiom scheme A3: α ∨ β ⇒ β ∨ α
Axiom scheme A4: (β ⇒ γ) ⇒ (α ∨ β ⇒ α ∨ γ)

S5: Necessitation: � α −→ � �α
Axiom scheme �-Instantiation: �α ⇒ α
Axiom scheme Monotonicity: �(α ⇒ β) ⇒ (�α ⇒ �β)
Axiom scheme Necessarily Possible: �α ⇒ ��α

C: Textual Substitution: � γ −→ � γ[v := β]

model 〈W, R, V 〉 and every w in W , V (α, w) = t . (|=L has lowest precedence —it
applies to the longest formula that follows it.)

The first part of Table 2 is a schematic presentation of propositional logic PM. PM
consists of one inference-rule scheme and four axiom schemes. The inference-rule scheme
denotes the infinite set of inference rules constructed by replacing metavariables α and β
by formulas. (Similarly for the axiom schemes.) In PM (as in all the logics in this paper),
a theorem is either an axiom or the conclusion of an inference rule whose premises are
theorems. We use the notation �L α for “ α is a theorem of logic L”. (�L has lowest
precedence; it applies to the longest formula that follows it.)

The second part of Table 2 extends propositional logic PM to modal logic S5, by adding
one inference rule and three axioms. S5 is sound and complete with respect to S5-valid-
ity [12].

3 Logic C

The intended model for C is the set of all states, where a state associates a value t or f with
each propositional variable and each state is accessible from all the others. In this model,
�α has the interpretation “ α is true in all states”. We now define this model formally.

Let Ŵ be the set of all total functions w : VP → {t, f} . Let R̂ be the universal
relation over Ŵ , i.e. w R̂ u holds for all w, u in Ŵ . Let V̂ be the value assignment
(i.e. it satisfies (3)) defined by V̂ (p, w) = w.p .3 Then, 〈Ŵ , R̂, V̂ 〉 is the (only) C-model,
and a formula α is C-valid iff for every w in Ŵ , V̂ (α, w) = t . The C-model is also an
S5-model, since R̂ is an equivalence relation. Consequently, |=S5 α implies |=C α .

3For w a one-parameter function, w.x denotes the application of w to argument x .

4

Logic S5 is sound but not complete with respect to C-validity. To see this, consider the
formula ¬�p . It is not S5-valid, since it evaluates to f in the S5-model ({w}, I, V) , where
V (p, w) = t and I is the identity relation. Since S5 is sound, ¬�p is not a theorem of
S5. However, |=C ¬�p holds, since �p evaluates to f —there is a world w in Ŵ that
satisfies V̂ (p, w) = f .

We define textual substitution γ[v := β] where v is a propositional variable and γ and
β are formulas. The definition treats occurrences of variables in �α as if they were bound.

v[v := β] = β
w[v := β] = w (for variable w different from v)
(¬γ)[v := β] = ¬(γ[v := β])
(δ ◦ γ)[v := β] = δ[v := β] ◦ γ[v := β] (for binary connective ◦)
(�γ)[v := β] = �γ

We allow simultaneous textual substitution, by letting v and β be lists of distinct propo-
sitional variables and formulas, respectively. The formal definition is left to the reader.

The third part of Table 2 extends logic S5 with inference-rule scheme Textual Substitu-
tion to yield logic C. It is easy to show that Textual Substitution preserves C-validity.

Textual Substitution and all the inference rules of S5 preserve C-validity. Also, the
axioms of S5 are C-valid. Therefore, logic C is sound with respect to C-validity.

To illustrate C, we prove that ¬�p is a theorem. We use a calculational style of proof
—see [7] or [8]. The first formula is a C-theorem. Since the last formula equals the first, the
last is also a C-theorem.

(�p ⇒ p)[p := false] —Textual Substitution in Axiom �-Instantiation
= 〈Definition of textual substitution for propositional variable p 〉

�p ⇒ false
= 〈Propositional theorem Q ⇒ false ≡ ¬Q , with Q := �p 〉

¬�p

Proving completeness of logic C with respect to C-validity

We now prove that C is complete with respect to C-validity. Since C is an extension of S5,
in this proof, we can use S5-theorems presented in Hughes and Cresswell [12] as C-theorems.
Also, we rely on the following lemma, which follows directly from the definition of V̂ (�α, w) .

Lemma. For any formula α, either |=C �α or |=C ¬�α.(4)

Hughes and Cresswell define ordered modal conjunctive normal form (ordered MCNF).
A formula is in ordered MCNF if it has the form C1 ∧ . . . ∧ Cn and each Ci has the form

β ∨ �γ1 ∨ . . . ∨ �γm ∨ �δ ,(5)

5

where β , the γi , and δ are propositional formulas (i.e. they don’t contain � or �).

We prove three lemmas, leading up to a proof that |=C (5) implies �C (5) .

Lemma. For propositional formula β, |=C β implies �C β.(6)

Proof. Suppose |=C β . Since β is a propositional formula, and since C contains complete
propositional logic PM, �C β .

Lemma. For propositional formula δ, |=C �δ implies �C �δ.(7)

Proof. If |=C �δ , there is a world w such that V̂ (δ, w) = t. Thus, there is an assignment
[p := c] of constants c (each constant being true or false) to the propositional variables
p of δ such that δ[p := c] evaluates to t in w . Since δ[p := c] contains no variables, it
evaluates to t in all worlds and is valid. By Lemma (6), �C δ[p := c] .

The following calculational proof shows that (�¬δ ⇒ ¬δ)[p := c] is equivalent to �δ .
Further, since the first formula is a theorem (it is an instance of axiom �-Instantiation
on which Textual Substitution is performed), the last formula is also a theorem. This
establishes �C �δ .

(�¬δ ⇒ ¬δ)[p := c] —Textual Substitution in �-Instantiation
= 〈Contrapositive; Double negation〉

(δ ⇒ ¬�¬δ)[p := c]
= 〈Definition of textual substitution〉

δ[p := c] ⇒ ¬�¬δ
= 〈 δ[p := c] ≡ true (since �C δ[p := c]); Abbreviation (see Table 1)〉

true ⇒ �δ
= 〈Left identity of ⇒〉

�δ ��

Lemma. For propositional formula γ, |=C �γ implies �C �γ.(8)

Proof. If |=C �γ , then V̂ (γ, w) = t in all worlds w . Hence, |=C γ . By Lemma (6), �C γ .
By inference rule Necessitation, �C �γ .

Theorem. |=C (5) implies �C (5).(9)

Proof. Suppose |=C (5) . By Lemma (4), each of �γi and �δ (i.e. ¬�¬δ) evaluates to f
in all worlds or to t in all worlds. The proof uses a three-case analysis: �δ evaluates to
t , �γi evaluates to t for some γi , and all �γi and �δ evaluate to f in all worlds.

Case �δ evaluates to t in all worlds. Then |=C �δ and, by Lemma (7), �C �δ . Note
that �δ ⇒ (5) is of the form P ⇒ P ∨ Q , which is a theorem of propositional logic PM,
so �C �δ ⇒ (5) . By Modus ponens, �C (5) .

6

Case �γi evaluates to t in all worlds. The proof is similar to the proof of the previous
case, using Lemma (8) instead of (7).

Case the �γi and �δ evaluate to f in all worlds. Since (5), i.e. β ∨ �γ1 ∨ . . . ∨
�γm ∨ �δ , is C-valid, β evaluates to true in all worlds, so |=C β . The rest of this proof
is similar to the proof of the first case, using Lemma (6) instead of (7).

Hughes and Cresswell [12, p. 117] prove the following theorem.

Ordered MCNF Theorem. For any formula α, there exists an ordered MCNF
formula mcnf .α such that �S5 α ≡ mcnf .α.

(10)

Corollary. �C α ≡ mcnf .α(11)
Corollary. �C α iff �C mcnf .α(12)
Corollary. |=C α iff |=C mcnf .α .(13)

Corollary (11) holds because C is an extension of S5. Corollary (12) follows from (11),
the definition of abbreviation ≡ , and Modus ponens. For Corollary (13), note that (11)
together with the soundness of C yields |=C α ≡ mcnf.α and use properties of V̂ .

To prove completeness of C, we use the following properties of propositional logic (which
is included in logic C) and the C model.

�C α ∧ β iff (�C α) and (�C β)(14)
|=C α ∧ β iff (|=C α) and (|=C β)(15)

Theorem. For any formula α, |=C α implies �C α.(16)

Proof. mcnf .α has the form C1 ∧ . . . ∧ Cn where each Ci has form (5). We have,

|=C α
iff 〈(13) —where mcnf.α is C1 ∧ . . . ∧ Cn 〉

|=C C1 ∧ . . . ∧ Cn

iff 〈(15), n − 1 times〉
(|=C C1) and . . . and (|=C Cn)

implies 〈Monotonicity of and , Theorem (9) (n − 1 times)〉
(�C C1) and . . . and (�C Cn)

iff 〈(14), n − 1 times〉
�C C1 ∧ . . . ∧ Cn

iff 〈(12) —where mcnf.α is C1 ∧ . . . ∧ Cn 〉
�C α ��

7

Comparison with earlier complete axiomatizations

As mentioned in Sec. 1, a number of complete axiomatizations of C have been given [13, 2, 1,
11, 9]. All of them are similar in nature to the following one, which we take from [9]. Begin
with Schematic S5 (see Table 2). Instead of adding inference rule Textual Substitution,
add as axioms all formulas of the form �δ for δ a satisfiable propositional formula (i.e. a
propositional formula that evaluates to t in at least one world of model C). Lemma (7)
now holds trivially, and we can prove completeness with respect to C-validity in the same
way that we proved completeness of C.

This axiomatization is unsatisfactory to us because it refers to the semantic notion
of satisfiability. However, this semantic notion can be eliminated, leading to a complete
syntactic axiomatization. A propositional formula is satisfiable iff its disjunctive normal
form contains a disjunct that does not contain some literal together with its negation.
Hence, to discover whether �δ (for δ a propositional formula) is a theorem, convert δ to
disjunctive normal form and determine whether one of its disjuncts contains a literal and
its negation. (Private communications with Rob Goldblatt and Joe Halpern).

The resulting axiomatization is still unsatisfactory to us, because of the need to reformu-
late δ of a conjectured theorem �δ in disjunctive normal form. This reformulation is not
in keeping with our usual way of proving theorems (using a calculational approach, where
suitable [7, 8, 5]). For example, to prove �δ ∨ �γ , we would be forced to prove that one of
δ and γ were satisfiable, rather than simply performing syntactic manipulations to obtain
�δ ∨ �γ , as is our preference. Inference rule Textual Substitution provides an alternative
that is more in tune with the way we prove theorems calculationally; it allows for a more
seamless integration of proofs of the various kinds of theorems of C.

4 C with a finite number of axioms

An axiomatization with a finite number of axioms is usually derived from one with axiom
schemes by (i) replacing the metavariables in the axiom schemes with propositional variables
and (ii) introducing an inference rule to substitute formulas for propositional variables:

� α −→ � αv
β .(17)

Here, α is a metavariable, v is a list of propositional variables, and β is a corresponding
list of metavariables. The notation αv

β denotes a copy of the formula denoted by α in
which all occurrences (even those within the scope of �) of the variables of v are replaced
by the formulas denoted by the corresponding variables of β .

This method for eliminating axiom schemes does not work in the case of Schematic C of
Table 2, because (17) does not preserve C-validity. For example, ¬�p is C-valid (as proven
earlier), but (¬�p)p

true , which is ¬�true , is not C-valid.

Instead, we obtain a sound axiomatization of C that has a finite number of axioms

8

Table 3: PM′, S5′, and C′

PM′: Uniform Substitution: � α −→ � αγ
β (γ a list of formula variables)

Modus Ponens: � α, � (α ⇒ β) −→ � β
Axiom A1: P ∨ P ⇒ P
Axiom A2: P ⇒ P ∨ Q
Axiom A3: P ∨ Q ⇒ Q ∨ P
Axiom A4: (Q ⇒ R) ⇒ (P ∨ Q ⇒ P ∨ R)

S5′: Necessitation: � α −→ � �α
Axiom �-Instantiation: �P ⇒ P
Axiom Monotonicity: �(P ⇒ Q) ⇒ (�P ⇒ �Q)
Axiom Necessarily Possible: �P ⇒ ��P

C′: Textual Substitution: � γ −→ � γ[v := β] (γ, β concrete)

as follows. First, extend language C to a language C′. The formulas of C′ will include
those of C; the original formulas of C will be called concrete formulas. Then, we give an
axiomatization of C′ —using a finite number of axioms. Finally, we show that the theorems
of C′ that are concrete are precisely the theorems of C.

Let VF be a new set of formula variables. We use upper-case letters P, Q,R, . . . for
formula variables. Formulas of C′ are defined as in (2), except that a formula variable is
also a formula. For example, p ∨ q , P ∨ Q , and p ∨ Q are formulas of C′.

A formula of C′ is concrete if it does not contain a formula variable. For example, p ∨ q
is concrete, but P ∨ Q and p ∨ Q are not concrete. Language C contains exactly the
concrete formulas of C′. For a formula α , let α denote the formula obtained by replacing
every formula variable P of α by the corresponding propositional variable p .

An axiomatization for C′ is given in Table 3. Its axioms are those of C, except that
metavariables have been replaced by formula variables. The inference rules of C′ include
those of C (even to requiring that, in Textual Substitution, γ and β be concrete). Inference
rule Uniform Substitution is used only for replacing formula variables: αγ

β denotes a copy
of the formula denoted by α in which all occurrences (even those within the scope of �) of
the formula variables in list γ are replaced by the formulas denoted by the corresponding
variables of β .

One may view logic C′ as simulating metavariables by formula variables. Note that
neither Uniform Substitution nor Textual Substitution can be used to derive a non-concrete
theorem from a concrete theorem.

We wish to prove that C and C′ have the same concrete theorems. To this end, call a
Hilbert-style C′ proof concrete iff the only non-concrete theorems in it are axioms. This
implies that an axiom is used only as the premise of an instance of Uniform Substitution
whose conclusion is concrete. For example, here is a concrete proof of ¬p ∨ (p∨p) ⇒ ¬p∨p .

9

1. (Q ⇒ R) ⇒ (P ∨ Q ⇒ P ∨ R) Axiom A4
2. (p ∨ p ⇒ p) ⇒ (¬p ∨ (p ∨ p) ⇒ ¬p ∨ p) Uniform Substitution
3. P ∨ P ⇒ P Axiom A1
4. p ∨ p ⇒ p Uniform Substitution
5. ¬p ∨ (p ∨ p) ⇒ ¬p ∨ p Modus Ponens, 4, 2

In a concrete C′ proof, each theorem that is derived using a Uniform-Substitution infer-
ence is an axiom of C. Thus, the concrete C′ proof can be turned into an C proof simply
by deleting each axiom and changing every hint “Uniform Substitution” to “Axiom”. For
example, the C proof corresponding to the above concrete proof is as follows.

1. (p ∨ p ⇒ p) ⇒ (¬p ∨ (p ∨ p) ⇒ ¬p ∨ p) Axiom A4
2. p ∨ p ⇒ p Axiom A1
3. ¬p ∨ (p ∨ p) ⇒ ¬p ∨ p Modus Ponens, 2, 1

Further, the reverse transformation turns a C proof into a concrete C′ proof. Hence:

Theorem. Every theorem of C has a concrete C′ proof, and every concrete theorem
of C′ that has a concrete proof is a theorem of C.

(18)

We now prove the important

Theorem. Every concrete theorem of C′ has a concrete C′ proof.(19)

Proof. Consider an arbitrary concrete theorem α and a Hilbert-style proof for it. We prove
by induction on the length of its proof that there exists a concrete proof of α . Since α is
concrete, the proof uses at least one inference rule. Below, we consider the four possibilities
for the last inference rule.

Textual Substitution, � γ −→ � γ[v := β] . Hence, γ is concrete, and by the induction
hypothesis, it has a concrete proof. Since the step � γ −→ � γ[v := β] does not introduce
a non-concrete theorem, the result follows in this case.

Necessitation, � α −→ � �α . Similar to the previous case.

Modus Ponens, � γ, γ ⇒ α −→ � α . Thus, � γ and � γ ⇒ α , so by Uniform
Substitution, � γ and � γ ⇒ α (recall that α is already concrete). By the induction
hypothesis, there are concrete proofs of γ and γ ⇒ α . Now use Modus Ponens, � γ, γ ⇒
α −→ � α , to complete a concrete proof of α .

Uniform Substitution, � γ −→ � γP
β for P a list of formula variables. Here, α is

γP
β . In the left column of Table 4 are the five ways in which the last two steps of the proof

could be written. We have abbreviated the names of inference rules by their initials, and
we have listed either the premises or the numbers of lines on which the premises appear in
the proof. In the right column, we give alternative concrete proofs —the formulas on lines
with boldface numbers are concrete formulas for which the inductive hypothesis is assumed,

10

Table 4: The five possible proofs of γP
β

(0) γ Axiom The proof to the left is concrete
(1) γP

β U.S. (0)

(0) δ[v := σ] T.S. δ (0) δ[v := σ] T.S. δ
(1) (δ[v := σ])P

β U.S. (0) (Textual Substitution requires δ to be con-
crete, so substituting for P has no effect)

(0) �γ N. γ (0) γP
β U.S. γ

(1) (�γ)P
β U.S. (0) (1) �(γP

β) (i.e. (�γ)P
β) N. (0)

(0) γ M.P. δ, δ ⇒ γ (0) δP,Q
β,q U.S. δ

(1) γP
β U.S. (0) (1) (δ ⇒ γ)P,Q

β,q U.S. δ ⇒ γ

(2) γP,Q
β,q M.P. (0), (1)

(γP
β is concrete, so P contains all formula variables in γ. Let Q be a list of

formula variables in δ except those in P and let q be a corresponding list of
propositional variables. Then γP

β is concrete and γP,Q
β,q is the same as γP

β .)

(0) δQ
σ U.S. δ (0) δP,Q

β,σP
β

U.S. δ

(1) (δQ
σ)P

β U.S. (0)

so they have concrete proofs. Since the remaining lines of these proofs contain concrete
formulas, the proofs are concrete.

Corollary of Theorems (18), (19). For concrete formula α, �C α iff �
C
′ α.(20)

A bit more can be said about formulas of S5 and S5′. Call a formula abstract if it
contains no propositional variables. Thus, P ∨P is abstract. Consider any formula α that
does not contain both a formula variable P and the corresponding propositional variable
p . Let α denote the abstract formula obtained by changing all (lower-case) propositional
variables to (upper-case) formula variables. For example, if α is p ∨ Q , then α is P ∨ Q
and α is p ∨ q . The proof of the following theorem is left to the reader.

Theorem. Let α be a formula that does not contain both a formula variable (e.g.
P) and its propositional counterpart (e.g. p). Then the following are all equivalent:
�S5 α, �S5′ α, �S5′ α, �S5′ α, and |=S5 α.

(21)

11

Acknowledgements

We thank Rutger Dijkstra, Rob Goldblatt, Joe Halpern, K. Rustan M. Leino, and members
of the Eindhoven Tuesday Afternoon Club for their extremely helpful comments on drafts
of this paper.

References

[1] Carroll, M.J. An axiomatization of S13. Philosophia, Philosophical Quarterly of Israel
8, 2–3 (November 1978), 381–382.

[2] Cocciarella, N.B. Logical atomism and modal logic. Philosophia, Philosophical Quar-
terly of Israel 4, 1 (1974), 41–66.

[3] Dijkstra, E.W. A Discipline of Programming. Prentice Hall, Englewood Cliffs, 1976.

[4] Dijkstra, E.W. The everywhere operator once more. EWD1086, 26 November 1990.

[5] Dijkstra, E.W., and C.S. Scholten. Predicate Calculus and Program Semantics. Springer
Verlag, New York, 1990.

[6] Gottlob, G. Survey on a Carnapian extension of S5. Technical report, Institut für
Informationssysteme, Technische Universität Wien, 1996.

[7] Gries, D., and F.B. Schneider. A Logical Approach to Discrete Math. Springer-Verlag,
New York, 1993.

[8] Gries, D., and F.B. Schneider. Equational propositional logic. IPL 53 (1995), 145-152.

[9] Halpern, Y.J., and Kapron, B. Zero-one laws for modal logic. Annals of Pure and
Applied Logic 69 (1994), 157-193.

[10] Hoare, C.A.R. An axiomatic basis for computer programming. Comm. ACM 12 (Oc-
tober 1969), 576-580, 583.

[11] Hendry, H.E., and M.L. Pokriefka. Carnapian extensions of S5. J. Philosophical Logic
14 (1985), 111-128.

[12] Hughes, G.E., and M.J. Cresswell. An Introduction to Modal Logic. Mehuen and Co.,
New York, 1968.

[13] Thomason, S.K. A new representation of S5. Notre Dame J. Formal Logic XIV, 2 (April
1973), 281–284.

12

