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APSS, a proactive secret sharing (PSS) protocol for asynchronous systems, is explained and proved
correct. The protocol enables a set of secret shares to be periodically refreshed with a new, inde-
pendent set, thereby thwarting mobile-adversary attacks. Protocols for asynchronous systems are
inherently less vulnerable to denial-of-service attacks, which slow processor execution or delay
message delivery. So APSS tolerates certain attacks that PSS protocols for synchronous systems
cannot.

Categories and Subject Descriptors: C.2.0 [Computer–Communication Networks]: Security
and Protection; C.2.4 [Distributed Systems]: Client/Server; D.4.6 [Security and Protection]:
Cryptographic Protocols; E.3 [Data Encryption]: Public Key Cryptosystems

General Terms: Algorithms, Design, Security, Reliability, Theory

Additional Key Words and Phrases: Threshold cryptography, proactive secret sharing, denial of
service, asynchronous system

1. INTRODUCTION

An (n, t + 1) secret sharing [Blakley 1979; Shamir 1979] for a secret s is a set
of n random shares such that (i) s can be recovered with knowledge of t + 1
shares, and (ii) no information about s can be derived from t or fewer shares.
Thus, if each share is assigned to a different server in a distributed system
then the secret remains available provided more than t servers are available
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and the secret remains confidential unless more than t servers have been
compromised.

Secret sharing alone does not defend against mobile adversaries [Ostrovsky
and Yung 1991], which attack, compromise, and control one server for a limited
period before moving to another. Given enough time, a mobile adversary might
compromise t + 1 servers, obtain t + 1 shares, and thus learn the secret. The
defense here is share refreshing, whereby servers periodically create a new,
independent secret sharing and then replace old shares with new ones. Because
the new and old secret sharings are independent, a mobile adversary cannot
combine new shares with old shares in order to reconstruct the secret.

Secret sharing with share refreshing is known as proactive secret sharing
(PSS) [Herzberg et al. 1995; Jarecki 1995]. PSS reduces the window of vulner-
ability during which an adversary must compromise more than t servers in
order to learn the secret. Without share refreshing, the window of vulnerability
is unbounded; with PSS, the window of vulnerability is shortened to the period
between two consecutive executions of share refreshing.

Prior work on PSS protocols [Herzberg et al. 1995; Jarecki 1995] assumes
a synchronous system, which implies bounds are known for message delivery
delays and processor execution speeds. Any assumption constitutes a vulnera-
bility, and the assumption of a synchronous system is no exception. Denial-of-
service attacks, in particular, might delay messages and/or consume processor
cycles, thereby invalidating the defining assumptions for a synchronous system.

This paper describes APSS, a PSS protocol for asynchronous systems—
systems in which message delivery delays and processor execution speeds do not
have fixed bounds. We are eliminating an assumption and thus eliminate a vul-
nerability. Besides implementing secret sharing, APSS can be used for thresh-
old cryptography [Boyd 1989; Desmedt 1988], where servers store shares of a
private key and perform cryptographic operations using these shares (without
ever materializing the entire private key). The particular secret sharing scheme
we employ for APSS has the number of shares grow exponentially with t and
is thus practical only if t is small (e.g., 1, 2, or 3); such small values of t are
common when building distributed services.

The paper is organized as follows. In Section 2, the system model and the cor-
rectness requirements for APSS are specified. Then Section 3 discusses share
refreshing and identifies challenges asynchronous systems bring to share re-
freshing. Those challenges are addressed in Sections 4 and 5, where the APSS
protocol is presented. Various ways in which the protocol can be optimized and
extended are explored in Section 6, followed by a discussion of related work in
Section 7. A correctness proof for the APSS protocol appears as an appendix.

2. SYSTEM MODEL AND CORRECTNESS

Consider a system comprising a set of n servers that hold shares of a secret
and communicate through a network. At any time, a server is either correct or
compromised. A compromised server might stop executing, deviate arbitrarily
from its specified protocols (i.e., Byzantine failure), and/or disclose or change
information stored locally. A compromised server can be recovered and become
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correct after the following actions are taken.

� Reset hardware and system configurations
� Reload the code (thereby eliminating Trojan horses)
� Reconstitute the state of each server (which might have been corrupted)
� Obsolete any confidential information an attacker might have obtained from

compromised servers.

Given a time interval T , a server is considered correct during T if and only if
that server is correct throughout interval T ; otherwise, the server is deemed
compromised during T .

2.1 Secret Sharing, Share Refreshing, and Secret Reconstruction

Servers store shares that constitute an (n, t +1) secret sharing for s. The initial
shares are generated by a trusted party and are assumed to have been delivered
securely to all participating servers. Thereafter, servers replace old shares with
new shares by periodically invoking share refreshing. Secret reconstruction is
used to reassemble a secret from the shares when needed.1

Complications arise when executions of share refreshing is concurrent with
secret reconstruction, because share refreshing might delete (old) shares that
secret reconstruction needs. This is an instance of the well-known readers/
writers problem [Courtois et al. 1971], with secret reconstruction the reader
and share refreshing the writer. One solution, in the spirit of Lamport’s [1977]
concurrent reading while writing, is to use version numbers in conjunction with
verifiable secret sharing [Chor et al. 1985]: execution of secret reconstruction
detects whether shares it reads constitute a sharing of s and iterates if they do
not.2

2.2 APSS Correctness Requirements

The objective of APSS is to provide a protocol for share refreshing so that the
following properties hold.

APSS SECRECY: An adversary learns nothing about secret s. �
APSS INTEGRITY: At any time, with high probability, secret reconstruction

returns s when it terminates. �
APSS AVAILABILITY: If messages sent during an execution of secret reconstruction

are delivered before a subsequent execution of share refreshing starts, then
that execution of secret reconstruction terminates. �

1The notion of share reconstruction can be easily extended to schemes that perform other operations
on the secret (e.g., digital signing in cases where the secret is a private key).
2Cornell On-Line Certification Authority (COCA) [Zhou et al. 2002] employs this, using APSS
in conjunction with client protocols that read and update digital certificates stored by quorums of
servers. The read and update client protocols (which read but do not write secret shares) and COCA’s
share refreshing protocol (which writes secret shares) each executes in under a few seconds with
four servers in a LAN or a WAN, so very few protocol restarts are observed when share refreshing
runs are hourly.
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Fig. 1. Window of vulnerability definition. Each black box represents an execution of share
refreshing.

APSS PROGRESS: Execution of share refreshing terminates on all servers that
are correct during that execution of share refreshing; at termination, correct
servers have deleted old shares and any related information. �
These correctness requirements must hold in a given assumed system model

and adversary model. We next elaborate on these.

2.3 Asynchrony and Window-of-Vulnerability Definition

Any assumption about execution timing or message delivery delay leads to vul-
nerabilities that can be exploited by launching attacks (e.g., denial-of-service
attacks) that invalidate that assumption. Therefore, we make no such syn-
chronous assumptions for APSS:

ASYNCHRONOUS SYSTEM: There is no bound on message delivery delay or server
execution speed. �
The Asynchronous System assumption might seem unnecessarily pes-

simistic because bounds on message delivery delay and server execution speed
invariably do exist. However, the Asynchrony System assumption allows us to
sidestep the hard problem of determining those bounds and the consequences of
making an error in that determination—namely, rendering the protocol vulner-
able to denial-of-service attacks (by making an optimistic choice) or producing
an extremely slow protocol due to time-outs that must delay long enough to
accommodate the worst-case scenario (by making a pessimistic choice).

Safety properties for protocols designed to work in asynchronous system
are necessarily independent of assumptions about timing. Furthermore, the
performance of such protocols depends only on actual message delivery delays
and server execution speeds—not on bounds for a worst-case scenario. However,
there is a price: protocols for asynchronous systems often suffer from reduced
fault-tolerance in comparison to their synchronous counterparts. For example,
our APSS protocol tolerates fewer than one-third compromised servers, while
PSS [Herzberg et al. 1995; Jarecki 1995] tolerates up to one-half compromised
servers.

With APSS, operation of the system is partitioned into phases, where each
phase is separated from the next by an execution of share refreshing. Correct
servers delete information related to old shares when execution of share re-
freshing completes. Thus, a window of vulnerability for the system extends
from the start of one execution of share refreshing to the end of the next.
Figure 1 illustrates.
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For a system with periodic executions of share refreshing, given the design
requirement that the length of a window of vulnerability cannot exceed W, one
important design parameter is time interval I for triggering the periodic exe-
cutions of share refreshing. Choosing I is easy in synchronous systems, where
there is a bound δ � W on the duration for an execution of share refreshing:
we simply set I to be W − δ.

For asynchronous systems, we set I to be W − �, where � is a conserva-
tive estimate on the duration for an execution of share refreshing.3 Note that,
although � is used for triggering execution of share refreshing, the value of
neither I nor � is used within that protocol. Thus, the execution time of share
refreshing is unaffected by the choice of either parameter and, even if the in-
terval between successive executions of share refreshing exceeds �, unlike a
(synchronous) PSS protocol, all safety properties of APSS continue to hold.

Should estimate � ever be exceeded, drastic measures can be taken to limit
the window of vulnerability and prevent too many servers from being com-
promised: servers can be disconnected from the network and administrators
notified. We can make the probability of � being exceeded negligibly low by
setting � conservatively.

2.4 Adversary Model

We model an adversary by a probabilistic polynomial Turing machine. We also
assume that computing discrete logarithms in Zp for a large prime p is infea-
sible and assume that digital signatures are existentially unforgeable under
adaptively chosen message attacks.

Under the Asynchronous System assumption, an adversary can schedule
when message deliveries occur. However, we do assume that communication
links between correct servers cannot be compromised by an adversary:4

SECURE LINKS: Communication links between two correct servers implement
confidentiality, integrity, and reliable delivery of messages. �

This is a reasonable assumption because, to implement confidentiality and
integrity of communication links, each server can maintain a unique public/
private key pair with the public key known to all other servers. A session key
can then be negotiated after mutual authentication, with messages encrypted
under that key. The session key must be refreshed with each execution of share
refreshing.5

3The value of � must take into account clock differences among the correct servers. (A clock syn-
chronization protocol [Lamport and Melliar-Smith 1984; Schneider 1987] can be used to keep the
local clocks on correct servers loosely synchronized.) Assuming that σ is a conservative bound on
clock differences, share refreshing can be invoked on a server at the interval of W−�−σ according
to its local clock.
4As shown in [Zhou 2001; Zhou et al. 2002a], APSS can be easily extended to work with links that
do not ensure reliable delivery of every message.
5We here assume private keys are stored in a tamper-proof cryptography coprocessor which per-
forms all operations involving these private keys. The use of a tamper-proof cryptography copro-
cessor will not necessarily prevent a compromised server from performing cryptographic opera-
tions for the adversary. The adversary might, for example, cause the server to generate signed or
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An adversary is assumed to gain full control over a compromised server; that
is, a compromised server exhibits Byzantine failures. We restrict the fraction of
the servers compromised in each window of vulnerability and assume a static
adversary [Canetti et al. 1996].

t-LIMIT SERVER COMPROMISE: At most t servers are compromised within each
window of vulnerability, where 3t + 1 ≤ n holds. �

For the rest of the paper, assume that n = 3t + 1 holds. Generalization to other
failure scenarios is discussed in Section 6.3.

3. SHARE REFRESHING REVISITED

Given an (n, t + 1) sharing S = {si | 1 ≤ i ≤ n} of a secret s, execution of share
refreshing computes a new, independent (n, t + 1) sharing S′ = {s′

j | 1 ≤ j ≤ n}
of s without reconstructing s first.

Let operation split generate a set of n random shares from a given secret and
operation reconstruct compute the corresponding secret from a given set of t +1
shares. Then, share refreshing can be described as follows:6

(1) Select a set T ⊂ S of shares, where |T | = t + 1. For each share si ∈ T ,
invoke function split to generate a subsharing consisting of a set of subshares
{si j | 1 ≤ j ≤ n}.

(2) Construct new sharing S′ = {s′
j | 1 ≤ j ≤ n} for s, where each s′

j is computed
from {si j | i ∈ T } using reconstruct.

Challenges emerge when set S of shares is distributed over n servers, each
server storing a share. Because some of the n servers might be compromised, it is
no longer feasible to predetermine set T in step (1) above while still guarantee-
ing that subsharings will be generated from shares in T . This is because we do
not know beforehand which servers are going to be compromised; compromised
servers might generate bogus subsharings or no subsharings. To ensure that
subsharings are generated from at least t +1 shares, at least t + (t +1) = 2t +1

encrypted messages for later use in attacks. A defense here is to maintain an integer counter
in stable memory (so the counter’s value will persist across failures and restarts) that is part of
the special-purpose cryptographic hardware. This counter is incremented every time a new win-
dow of vulnerability starts; and the current counter value is included in every message that is
encrypted or signed using the tamper-proof hardware. A server can now ignore any message it
receives that has a counter value too low for the current window of vulnerability. In the absence
of tamper-proof coprocessors, private keys must be refreshed at the same time that shares are.
One simple approach has trusted administrators for each server invent and propagate new public
keys through secure channels implemented by having an administrative public/private key pair.
The administrative public key is known to other administrators (and all servers); the adminis-
trative private key, kept off-line most of the time as a defense against on-line attacks, is used to
sign notification messages for the new public key. An automated rekeying scheme is discussed
in [Canetti 1995].
6We write names split and reconstruct without giving specific realizations to allow different share
refreshing implementations. Realizations of the two operations must ensure that the resulting new
sharing constitutes an (n, t + 1) secret sharing for the same secret as the old sharing. We can often
use the secret splitting and secret reconstruction operations from a secret sharing scheme (e.g., the
ones for Shamir’s secret sharing.)
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subsharings must be generated from different shares on different servers be-
cause up to t servers might be compromised. Two problems must then be solved
to make share refreshing work.

DISSEMINATION PROBLEM. Because a compromised server might not follow the
protocol to generate and propagate a subsharing, there must be a mecha-
nism (i) to determine the validity of subshares and (ii) to ensure that correct
servers eventually get enough subshares to compute the new shares. That is,
servers must verify that a subsharing {si j | 1 ≤ j ≤ n} is generated correctly
using split from si and that each subshare si j has been received by server pj
if server pj is not compromised. �

CONSISTENCY PROBLEM. With at least 2t + 1 subsharings generated, subshares
from up to 2t + 1 > t + 1 subsharings might have been correctly dis-
seminated to servers. All correct servers must select and use subshares of
the same set of subsharings in order to generate a new sharing for the same
secret as the old one. �

The Asynchronous System assumption makes both of these problems difficult
to solve.

For the Dissemination Problem, verifiable secret sharing (VSS) can be used
so that servers can verify subshares they receive. However, it is generally im-
possible to tell whether all correct servers have received and verified their
respective subshares, because under the Asynchronous System assumption, a
compromised and nonresponsive server cannot be distinguished from a correct,
but slow, one. Fortunately, shares in an (n, t + 1) secret sharing have intrinsic
redundancy so that the secret can be reconstructed from any t + 1 shares. The
same holds for each subsharing generated in share refreshing. In Section 4,
we show how to expose and leverage such redundancies in order to solve the
Dissemination Problem.

It might seem that solving the Consistency Problem requires consensus
in an asynchronous system—known to be impossible [Fischer et al. 1985]
to solve with any deterministic protocol. Fortunately, implementing consen-
sus is unnecessary, and Section 5 shows how we do solve the Consistency
Problem.

4. SOLVING THE DISSEMINATION PROBLEM

Consider an execution of share refreshing and the window of vulnerability that
starts from this execution of share refreshing. To solve the Dissemination Prob-
lem, it suffices that every subsharing selected for constructing new shares be
correctly disseminated. That is, correct servers must obtain their respective
subshares from each subsharing.

A server disseminating subshares cannot be expected to wait for acknowl-
edgments of subshare receipt from more than n − t servers, because up to
t servers might be compromised and never respond. Moreover, compromised
servers might respond before correct servers do, so only (n − t) − t = n − 2t
of the n − t subshare receipt acknowledgments are guaranteed to come from
correct servers.
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In theory, the subshare receipt acknowledgments from n−2t correct servers
should be adequate for correct servers to reconstruct all subshares in a subshar-
ing as long as n− 2t ≥ t + 1 holds, since t + 1 subshares suffice for constructing
a share.

In practice, a correct server not receiving a needed subshare should have
a way to retrieve that subshare from the t + 1 correct servers that do receive
their subshares. One such scheme was proposed in [Jarecki 1995], but it re-
quires coordination/agreement among a set of at least t + 1 servers; something
hard to achieve when the Asynchronous System assumption holds. APSS must
therefore employ another scheme.

4.1 (l, l ) Secret Sharing and Index Sets

The solution employed for APSS exploits redundancy among shares held by
different servers, as follows. In an (l , l ) secret sharing for s, all l shares are
needed to reconstruct s, and schemes exist [e.g., Ito et al. 1987] that assign
such shares to n servers in a way that shares stored by any t + 1 servers suffice
to reconstruct s, but shares held by fewer servers are not. So APSS assigns a
set of shares from an (l , l ) sharing of s to each server, employing the following
construction of Ito et al. [1987].

Given n servers, where up to t servers might be compromised, compute l :=(n
t

)
and generate an (l , l ) secret sharing. Assign indexes {i | 1 ≤ i ≤ l } to shares

of the (l , l ) secret sharing as follows:

(1) Create l = (n
t

)
different sets P1, . . . , Pl of servers, each containing a unique

set of t of the n servers. Servers in any of these sets jointly do not have
enough shares to reconstruct secret s provided servers in any set Pi do not
together have all l shares.

(2) For each server p, define index set Ip to be {i | 1 ≤ i ≤ l , p �∈ Pi}; this set
identifies shares that are stored at server p. By not including i in Ip for
each server p in Pi, we ensure that servers in Pi do not have the share with
index i, and thus do not have all l shares needed to reconstruct s. Servers
in any set Q of t + 1 servers will jointly have all indexes in their index
sets. This is because, for each 1 ≤ i ≤ l , there exists p ∈ Q − Pi, hence,
i ∈ Ip.

The index sets thus satisfy(⋃
p∈P

Ip

)
= {i | 1 ≤ i ≤ l } if |P | ≥ t + 1 (4.1)

(⋃
p∈P

Ip

)
⊂ {i | 1 ≤ i ≤ l } if |P | ≤ t (4.2)

Because each server now holds a set of (l , l ) shares, recovery of the set of shares
for a server is straightforward: a server p fetches from t + 1 server q all shares
(subshares) with indexes in Ip

⋂
Iq .

Figure 2 illustrates how to assign four shares of a (4, 4) sharing to four servers
and tolerate one compromised server. (Note that

(4
1

) = 4 holds.) The index set
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Fig. 2. Assignment of shares (n = 4 and t = 1).

Fig. 3. VSS Generate(s, r), verifiable sharing generation protocol.

for each server pi consists of all indexes except i. No single index set contains
all four indexes, so a single compromised server is unable to obtain all four
shares needed to recover the secret.

4.2 Verifiable Secret Sharing

Recipients of subshares from a server must verify the validity of those
subshares. A solution here is verifiable secret sharing. In APSS, we employ
Pedersen’s [1992] noninteractive verifiable secret-sharing scheme.7 Here is how
that works.

Let p and q be large prime numbers satisfying p = 2q + 1. Let g and h be
two public elements of Z ∗

p of order q, where no server knows logg h mod p. We
assume that, given g and h, computing logg h mod p is infeasible. Henceforth,
we omit “mod q” (for operations on verifiable shares or exponents) and “mod p”
(for operations on exponentiations and discrete logarithms.)

Consider a dealer responsible for creating and distributing an (l , l ) secret
sharing for a secret s. To create a verifiable secret sharing, the dealer randomly
picks r ∈ Zq and performs the protocol in Figure 3, generating:

(S, R, �) := VSS Generate(s, r)

We call (S, R, �) a verifiable sharing and (i, S[i], R[i]) the ith verifiable share;
the ith verifiable share is private to each server p where i ∈ Ip holds. � is the
public part of a verifiable sharing, and it is used as the label of that verifiable
sharing.

7We could instead use Feldman’s [1987] verifiable secret sharing, with different security guarantees.
See Jarecki [1995] for a comparison between Feldman’s and Pedersen’s verifiable secret-sharing
schemes.
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Given public information p, q, g , and h, validity of a verifiable sharing
(S, R, �) is checked as follows.

verify-vec(�) checks validity of �; the check passes if and only if �[0] = ∏l
i=1 �[i]

holds.
verify-share(�, i, S[i], R[i]) checks validity of verifiable share (i, S[i], R[i]) with

respect to �; the check passes if and only if �[i] = g S[i]hR[i] holds.

The following properties of verifiable secret sharing are proved in
Appendix B. These proofs instantiate results in [Pedersen 1992] for the (l , l )
secret sharing scheme we use in VSS Generate(s, r) of Figure 3.

VSS-COMPLETENESS: For a verifiable sharing generated from the protocol in
Figure 3, if (S, R, �) := VSS Generate(s, r), then verify-vec(�) holds and
verify-share(�, i, S[i], R[i]) holds for each 1 ≤ i ≤ l . �

VSS-SOUNDNESS: Assume that computing discrete logarithms in Zp is hard and
that an adversary is unable to compute logg h. Given, p q, g , h, and verifi-
able sharing (S, R, �), where �[0] is known to be gshr for some r ∈ Zq. If
verify-vec(�) holds and verify-share(�, i, S[i], R[i]) holds for each 1 ≤ i ≤ l ,
then with high probability elements in S constitute an (l , l ) sharing of
secret s. �

VSS-CONFIDENTIALITY: Given public information p, q, g , h, and a verifiable
sharing (S, R, �). An adversary learns nothing about s from � and from
{(i, S[i], R[i]) | 1 ≤ i ≤ l , i �= j } for some 1 ≤ j ≤ l . �

4.3 Subsharing Certification

In APSS, a server generating and propagating a subsharing plays the role of
a dealer and uses verifiable secret sharing to prove the authenticity of those
subshares, since in APSS a subsharing for a share S[i] is, in fact, a sharing for
S[i]. Assume that servers hold shares of a verifiable secret sharing (S, R, �)
prior to execution of share refreshing. Each server d , for each verifiable share
(i, S[i], R[i]), where i ∈ Id , performs a subsharing certification protocol to gen-
erate and certify a verifiable sharing (Si, Ri, λi). The subsharing certification
protocol is shown in Figure 4, where we use E(x) to represent a ciphertext of x,
we use 〈Y 〉p to denote a message Y digitally signed by server p, and recipients
ignore messages bearing invalid digital signatures.8

A subsharing generated in step Cert1 by server d is considered certified
when server d gathers verified messages from 2t + 1 servers in step Cert3.
Triple (�, i, λi) serves as the label for the certified subsharing and elucidates
how the subsharing relates to the old sharing.

The subsharing certification protocol ensures the following properties.

LEMMA 4.1. Execution of the subsharing certification protocol initiated by a
correct server d terminates.

8Such signature checking step is omitted in the protocol description throughout the paper.

ACM Transactions on Information and System Security, Vol. 8, No. 3, August 2005.



APSS: Proactive Secret Sharing in Asynchronous Systems • 269

Fig. 4. Subsharing certification protocol.

PROOF SKETCH: The subsharing certification protocol terminates if server d
receives verified messages from 2t + 1 servers. Receipt of these messages is
guaranteed, if there exists at least 2t + 1 correct servers that receive verify
messages satisfying conditions Cert2a to Cert2c (Figure 4). According to Cert1,
all servers receive verify messages; by t-limit Server Compromise assumption,
at least 2t +1 of those are correct. Due to VSS-Completeness, conditions Cert2a
to Cert2c will be satisfied at those servers, so the 2t + 1 verified messages being
sought will be received by d . �

LEMMA 4.2. If an (l , l ) verifiable subsharing with label (�, i, λi) is certified
by the protocol in Figure 4, then, with high probability, there exists a set of l
subshares, each on a correct server, that constitute a subsharing for the ith share
of sharing �.

PROOF SKETCH: According to Cert3, for a subsharing to be considered certified,
there must exist a set Q of 2t+1 servers that have sent the verified message to d
for that subsharing. Since by the t-limit Server Compromise assumption at most
t servers are compromised, there exists a subset Q ′ ⊆ Q of at least t +1 correct
servers. Due to Eq. (4.1),

⋃
p∈Q ′ Ip = { j | 1 ≤ j ≤ l } holds. According to Cert2c,

there exists l verifiable subshares {( j , si j , ri j ) | 1 ≤ j ≤ l }, such that verify-
share(λi, j , si j , ri j ) holds for each 1 ≤ j ≤ l . Given that λi[0] = �[i] = g S[i]hR[i]

holds (Cert2b) and that verify-vec(�) holds (Cert2a), due to VSS-Soundness,
{sij | 1 ≤ j ≤ l } constitutes an (l , l ) sharing of share S[i] with high probability.
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Fig. 5. Subsharing recovery protocol.

Furthermore, by construction, Q ′ consists of at least t + 1 correct servers. So,
subshare si j for each 1 ≤ j ≤ l is stored on at least one of the servers in Q ′,
and servers in Q ′ are all correct. �

4.4 Subsharing Recovery

The protocol in Figure 4 ensures that at least t +1 correct servers have received
and verified their subshares, but not that all correct servers receive their sub-
shares. A subsharing recovery protocol (see Figure 5) allows retrieval of those
subshares.

Using that protocol, if subsharing (�, i, λi) is certified, then a correct server
p will receive all its subshares (i.e., subshares with indexes in Ip).9

LEMMA 4.3. Execution of the subsharing recovery protocol terminates if in-
voked by a correct server p for a certified subsharing.

PROOF SKETCH: According to Cert3, for a certified subsharing, there must
exist a set Q of 2t + 1 servers that have sent the verified message to server
d—executing Cert1—for that subsharing. Because at most t servers are com-
promised, there exists a subset Q ′ ⊆ Q of at least t + 1 correct servers. So, by
Eq. (4.1),

⋃
q∈Q ′ Iq = { j | 1 ≤ j ≤ l } holds. Therefore,

⋃
q∈Q ′ (Iq

⋂
Ip) = { j |

1 ≤ j ≤ l } ⋂
Ip = Ip holds. The recovered messages from servers in Q ′ (step

Rec2) will contain all subshares that p needs to complete the subsharing re-
covery protocol. Server p will always consider recovered messages from servers

9Here, we assume old shares and subshares are not deleted.
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in Q ′ valid, because these servers are correct and because the verification in
step Rec3 is subsumed in the verification that servers in Q ′ perform in step
Cert2. �

5. SOLVING THE CONSISTENCY PROBLEM

Certified sharings, one for each original share, are used in APSS for construct-
ing new shares. Multiple certified subsharings might exist, though. Achieving
agreement on which to use might seem to require consensus in an asynchronous
system, for which impossibility results [Fischer et al. 1985] are known. For
APSS, we instead exploit the observation that having a single set of new shares
generated is not really necessary. Multiple new sharings could be produced by
an execution of share refreshing and we allow APSS to generate up to n new
sharings. Execution of share refreshing that starts with n old sharings (as a
result of a previous execution) will generate up to n sharings (rather than n2),
thereby avoiding exponential explosion in the number of sharings created in
subsequent windows of vulnerability.

Solving the Consistency Problem requires that, for any new sharing gener-
ated by execution of share refreshing, servers use the same set of subsharings
to construct their new shares. This would be easy to implement if there were
a coordinator that picks an old sharing (among possibly n old sharings) for re-
freshing and selects a set of certified subsharings (from among the multiple
certified subsharings produced by the holders of each share) for each share in
the old sharing. Share refreshing could then be carried out as shown in Figure 6.
There, a version number v indicates the vth execution of share refreshing and is
used to prevent replay attacks. A coordinator identifier is also included in each
message to distinguish the different instances of share refreshing initiated by
different coordinators.

Any server can be a coordinator. A compromised coordinator might try to
cause servers to generate inconsistent shares, but inconsistent shares have
different labels and will not be used together in reconstructing the secret. A
compromised coordinator instead might fail to complete execution of the pro-
tocol in Figure 6. However, this is not a problem provided some correct server
also is a coordinator. APSS therefore has at least t + 1 servers function as
coordinators—for simplicity, the protocol has all n servers act as coordinators.

Deletion of Old Shares and Subshares

Correct servers delete old shares and subshares when new shares are gener-
ated. However, deletion must wait until those shares and subshares are no
longer needed—that is, until t + 1 correct servers have constructed new shares
for the sharing, since, with t + 1 correct servers, there exists a correct server
that holds each new share, and other correct servers can use a protocol similar
to the subsharing recovery protocol to recover their shares.

A coordinator C can determine that t + 1 correct servers have constructed
new shares by collecting digitally signed completed messages from 2t+1 servers
and using these as the evidence that (2t + 1) − t = t + 1 correct servers have
obtained the requisite new shares. These completed messages are attached to
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Fig. 6. Share refreshing with coordinator C.

done messages sent to all servers by adding step SS5 (Figure 7) to the end
of the protocol in Figure 6. The receipt of a valid done message on a server
leads a server to delete old subshares and shares, as well as echoing that done
messages to all servers (step SS6 in Figure 7).
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Fig. 7. Old share/subshare deletion—extensions to Figure 6.

6. VARIATIONS ON A THEME

6.1 Protocol Optimizations

Our discussion so far has ignored cost. Performance optimization of the protocol
is possible.

A system comprising all correct servers would not need the redundant pro-
cessing that having at least t + 1 coordinators brings. Moreover, in the absence
of denial-of-service attacks, it becomes reasonable to assume optimistic bounds
on message delivery delays and processor execution speeds. More efficient pro-
tocols are thus possible when those bounds do hold. So here is an opportunity to
optimize the protocol by eliminating unnecessary work in settings where com-
promise and attack is rare—the likely case when the number of servers is small.

The key insight for implementing this optimization for cases where attacks
are absent is to note that actions can be delayed arbitrarily without affect-
ing correctness of any protocol designed for an asynchronous system. APSS is
designed for an asynchronous system and, therefore, execution of all but one
correct coordinator can be delayed without ill effect. Similarly, for that single
coordinator, only l subsharings, one for each share of the selected old sharing,
need to be certified by servers executing the subsharing certification protocol
in Figure 4. Thus, an optimized version of APSS is obtained by (i) selecting
a single coordinator C whose execution is not delayed; (ii) delaying other co-
ordinators so they do not start executing until C should have finished were
it correct and the system synchronous. Note that a valid done message can
serve as the notification that additional coordinators are not needed for this
execution of share refreshing; (iii) instructing servers to have l subsharings cer-
tified for coordinator C, while delaying the certifications for other subsharings.

Without such optimizations to APSS, each of the n coordinators will trigger
executions of the subsharing certification protocol on each of the n servers for
each share that server has for the selected old sharing. Because of the use of
(l , l ) secret sharing, the size of Ip for each server p is O(l ) (or more precisely,
l (n − t)/n). Each execution of the subsharing certification protocol has mes-
sage complexity of O(n), communication complexity of O(κnl ), where κ is the
size of p, and computational cost of O(nl ) in terms of the number of modular
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exponentiations. It is also easy to verify that this phase dominates the mes-
sage complexity, communication complexity, and computational cost of share
refreshing, as described in Figures 6 and 7. Therefore, the message complex-
ity of the protocol is O(n3l ) with communication complexity of O(κn3l2) and
computational cost of O(n3l2).

With the optimizations, when the optimistic system assumptions do hold,
there is a single coordinator that triggers a total of l executions of the sub-
sharing certification protocol on all servers. Therefore, the message complexity,
communication complexity, and computational cost of the protocol are reduced
to O(nl ), O(κnl2), and O(nl2), respectively.

6.2 Mitigating Denial-of-Service Attacks

APSS was designed to ensure that APSS Secrecy, APSS Integrity, APSS Avail-
ability, and APSS Progress cannot be violated by the actions of t or fewer com-
promised servers. But launching a denial-of-service attack does allow compro-
mised servers to slow down processing. Of specific concern to APSS are attacks
that cause servers to generate unnecessarily large numbers of subsharings
and/or sharings. A compromised server could launch such an attack by sending
init messages containing different labels � in step SS1, by generating and dis-
seminating multiple different subsharings from each share in step SS2a, and
by sending select messages containing different choices of subsharing sets in
step SS3.

We can eliminate these APSS vulnerabilities by requiring that correct
servers never process two different messages of the same type and pedigree,
where two messages are defined to have the same pedigree if they are sent on
behalf of the same coordinator, in the same execution of share refreshing, and
by the same sender. This defense can be implemented if a server stores the first
message of each type and pedigree that it receives in this run and then discards
subsequent incoming messages of the same type and pedigree. Messages from
a correct server will never be discarded, because correct servers never send dif-
ferent messages with the same type and pedigree. Therefore, the APSS protocol
can be modified to defend against this denial-of-service attack.

6.3 General and Dynamic Adversary Structures

An adversary structure [Hirt and Maurer 2000] is a collection of sets of servers,
where each set specifies servers that might all be compromised in the same
window of vulnerability, and all subsets of each set in the collection are also in
the collection. APSS was described above for t threshold adversary structures—
collections of all sets containing t or fewer servers. Other adversary structures
exist. For a given system and threat, these other adversary structures might
well be better models of what sets of servers could be compromised during a
window of vulnerability.

APSS is easily extended to accommodate arbitrary adversary structures. For
this purpose, it is helpful to recall that APSS

� employs the construction of Ito et al. [1987] to formulate share sets and
� is built from steps that involve sets of t + 1 servers and sets of 2t + 1 servers.
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Two important properties about the sets containing t + 1 servers are: (i)
each such set contains at least one correct server, and (ii) the secret can be
reconstructed from shares stored on the t + 1 servers. The collection of sets
containing 2t + 1 servers also is interesting, as an instance of a dissemination
Byzantine quorum system [Malkhi and Reiter 1998] with each such set of 2t +1
servers constituting a quorum, and therefore:

QUORUM AVAILABILITY: There always exists a quorum consisting only of correct
servers. �

QUORUM INTERSECTION: The intersection of any two quorums contains a correct
server. �

Moreover, the quorums in APSS also satisfy

QUORUM RECOVERABILITY: Share sets at correct servers in a quorum contain suf-
ficient shares to reconstruct the secret. �

Thus, we refer to this collection of quorums as forming a recoverable quorum
system.

The construction in Ito et al. [1987] encompasses the generation of share sets
for arbitrary adversary structures such that a secret is reconstructible by a set
of servers R if and only if R is not in the adversary structure. Provided no three
sets in an adversary structureA cover the set U of all servers, then the collection
Q = {U −F |F ∈ A} of server sets will constitute a recoverable quorum system10

because Q satisfies Quorum Availability, Quorum Intersection, and Quorum
Recoverability.11 Thus, simply replacing appearances of “t + 1 servers” in the
description of APSS with “set of servers not in the adversary structure” (so
above conditions (i) and (ii) hold for the new sets) and replacing appearances
of “2t + 1 servers” with “quorum of servers” yields a variant of APSS for any
given adversary structures.

It is also not difficult to generalize APSS to support dynamically changing
sets of servers and dynamically changing adversary structures.12 Given old
and new server sets and adversary structures, an execution of share refreshing
must delete all old shares on correct old servers and store new shares on the
correct new servers. This is accomplished if

� step Cert1 in Figure 4 is changed so that old servers now generate and prop-
agate the subsharings to the new servers based on the new adversary struc-
ture, and

� step SS6 in Figure 6 is changed to forward done messages to both the old and
new servers.

10Note, recoverable quorum systems that have smaller quorums than Q might also exist.
11See Malkhi and Reiter [1998] for a proof that Quorum Availability and Quorum Intersection hold.
Q satisfies Quorum Recoverability, because Q − F �∈ A for any Q ∈ Q and F ∈ A.
12The underlying mathematics for schemes that allow such dynamic changes of sets of servers and
adversary structures were discussed in Frankel et al. [1997a] and in Desmedt and Jajodia [1997].
A protocol for verifiably redistributing secrets for a different adversary structure is presented in
Wong et al. [2002].
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6.4 Share-Refreshing and Subshare-Dissemination Alternatives

Various alternatives to the share refreshing and subshare dissemination em-
ployed by APSS are possible; we explore those next.

6.4.1 Share Refreshing. Herzberg et al. [1995] describes a share-
refreshing scheme that exploits the property that share-wise addition of any
sharing of 0 with a sharing of s yields another sharing of s. So given an old
(n, t + 1) sharing {si | 1 ≤ i ≤ n} of s, a new sharing for s is {si + s′

i | 1 ≤ i ≤ n},
where {s′

i | 1 ≤ i ≤ n} is a randomly generated sharing of 0.
This scheme can be used in APSS.13 In step Cert1 of Figure 4, a server

will generate a distinct, random sharing of 0; shares in this sharing of 0
are then distributed in verify messages to the other servers, much like sub-
shares are now distributed in step Cert1; once certified, a label for the sharing
of 0 is sent to the coordinator using a certified message, as in step SS2b of
Figure 6. The coordinator, in step SS3, then selects t + 1 sharings of 0 (to
ensure that at least one of them is generated by a correct server)14 and in-
forms all servers of those selections with select messages. Servers then add the
shares in the selected sharings of 0 to their old shares in order to generate new
shares.

6.4.2 Subshare Dissemination. In APSS, each subshare is stored by
enough different servers so that copies remain available at the correct servers
provided no more than t servers are compromised. An alternative, inspired by a
scheme proposed in Cachin et al. [2002] involving bivariate polynomials, is the
following. In addition to sending subshares to servers, we employ an (n, t + 1)
standard secret sharing and store shares of each subshare—subsubshares—at
2t+1 servers. A subshare can now be recovered by repeatedly requesting its sub-
subshares from all servers until t +1 of those subsubshares have been received.
In order to defend against receiving bogus subsubshares from compromised
servers, verifiable secret sharing should be used when originally splitting the
subshare with the (n, t + 1) sharing.

The scheme presented by Cachin et al. [2002] does not explicitly require
a (sub)sharing recovery protocol, as we do. This is because in the protocol of
Cachin et al. [2002], correct servers proactively echo subshares to other servers.
Our protocol can be modified to do the same: at the end of step Cert2, server p
will send a message containing the same information in the recovered message
to every other server. Having recovery instead of proactive echoing produces
an optimistic protocol that saves the extra echo messages in the (normal) cases

13Dynamically changing adversary structures discussed in Section 6.3 cannot be accommodated,
because new shares here are computed from old shares, and these old shares will not necessarily
exist on servers when the adversary structure is dynamic.
14It is sufficient, in fact, to have only t sharings of 0 generated and added to the old sharing.
Because at most t servers are compromised in each window of vulnerability, even if all t sharings
of 0 are created by compromised servers, no other servers are compromised in the new window
of vulnerability or the old (recall that an execution of share refreshing belongs to both windows).
Therefore, an adversary will not be able to learn enough old or new shares to reconstruct the secret,
even though it knows the transformation from the old sharing to the new one.
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where no subsharing recovery is needed. Such a scheme also makes it easy to
adapt our APSS protocol to a system model where links are not reliable, but
fair, as shown in Zhou [2001] and Zhou et al. [2002a].

7. RELATED WORK

APSS was first described in Zhou [2001] and Zhou et al. [2002a]. This paper
restructures the original protocol, presents extensions, and provides a more
rigorous proof than the one given in Zhou [2001].

A second proactive secret sharing protocol for asynchronous systems, devel-
oped independently, is described in Cachin et al. [2002], where a formal model
and proof are presented. This protocol differs from APSS in two significant
ways:
� It employs a randomized multivalued validated Byzantine agreement pro-

tocol Cachin et al. [2001] so that all correct servers will agree on the set of
subsharings to use in generating a new sharing for the secret. APSS eschews
the agreement and instead generates multiple new sharings, each with a
different label. There is no need to generate only one new sharing, so APSS
avoids the need to run an agreement protocol.

� It employs a bivariate polynomial to implement subsharing recovery. The
scheme, which can be retrofitted into APSS (as discussed in Section 6.4), cir-
cumvents the exponential explosion that the (l , l ) secret sharing causes for
APSS;15 the protocol of Cachin et al. [2002] has polynomial-time communi-
cation and message complexity.

However, the solution in Cachin et al. [2002] does not apply to refreshing
shares of an RSA private key because of its use of bivariate polynomial—for
RSA, φ(n), the modulus, is not known to servers. In contrast, APSS can be
easily adapted: because of its use of (l , l ) secret sharing, APSS can use the
(n, n) threshold RSA scheme and share-refreshing scheme outlined in Rabin
[1998]—these schemes do not require operations with modulus φ(n).

Proactive secret sharing was suggested in [Herzberg et al. 1995; Jarecki
1995] and is an instance of proactive security, introduced by Ostrovsky and
Yung [1991] for multiparty computations. Herzberg et al. [1997] give proac-
tive schemes for discrete-logarithm based public key cryptography; Frankel
et al. [1997a, 1997b] and T. Rabin [1998] give proactive RSA schemes. A survey
appeared in [Canetti et al. 1997]. All are designed for the synchronous sys-
tem model, but all provide a set of modules to generate shares from a secret
(a private key), to generate subshares from a share, and to create new shares
from subshares (and possibly also the old shares). These same modules could be
used with APSS to obtain corresponding proactive schemes that work in asyn-
chronous systems. For example, APSS has been used to construct a proactive
threshold RSA scheme for COCA [Zhou et al. 2002].

Besides COCA, other systems efforts are notable for their attempts to com-
pose security with fault-tolerance and thus for the weak assumptions they too

15In practice, most distributed services involve only a relatively small number of servers, so this
exponential factor is unlikely to be of concern.
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make about the environment. Rampart [Reiter 1995, 1996] implements pro-
cess groups in an asynchronous distributed system where compromised servers
can exhibit arbitrary behavior. BFT (Byzantine Fault-Tolerance) Castro and
Liskov [2002] and SINTRA (Secure Intrusion-Tolerant Replication on the In-
ternet) Cachin and Poritz [2002] are toolkits that support asynchronous group
communication primitives along with proactive security. It seems clear that al-
gorithms for asynchronous systems and support for proactive security are going
to be increasingly important if distributed services deployed in open networks,
like the Internet, must be trustworthy.

APPENDIX

A. Sharing Transformation

The proofs presented in the appendix rely on transforming one verifiable shar-
ing to another. The transformation is described here.

Let (S, R, �) be a verifiable sharing for secret s ∈ Zq, such that verify-vec(�)
holds, and verify-share(�, i, S[i], R[i]) holds for each 1 ≤ i ≤ l . For any secret
s′ ∈ Zq and index j (1 ≤ j ≤ l ), function transforms,s′, j (S, R, �) produces a
new verifiable sharing (S′, R ′, �′) as follows:

Compute r ′ ∈ Zq, such that gshr = gs′
hr ′

and compute

S′[i] :=
{

S[i] for i �= j

s′ − s + S[ j ] for i = j

R ′[i] :=
{

R[i] for i �= j

r ′ − r + R[ j ] for i = j

�′[i] :=
{

gs′
hr ′

for i = 0

g S′[i]hR ′[i] for 1 ≤ i ≤ l

It is easy to verify:

� �′ = � holds because gshr = gs′
hr ′

.
� R ′ (resp. S′) differs from R (resp. S) only at the j th element.
� (S′, R ′, �′) is a verifiable sharing of s′ because

—verify-vec(�′) holds because of �′ = �.
—verify-share(�′, i, S[i]′, R[i]′) holds for each 1 ≤ i ≤ l .
—

∑l
i=1 S′[i] = s′ holds.

B. VSS Proofs

VSS-COMPLETENESS: For a verifiable sharing generated from the protocol in
Figure 3, if (S, R, �) := VSS Generate(s, r), then verify-vec(�) holds and
verify-share(�, i, S[i], R[i]) holds for each 1 ≤ i ≤ l .
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PROOF SKETCH: Condition verify-vec(�) holds because
l∏

i=1

�[i] =
l∏

i=1

g S[i]hR[i] = g
∑l

i=1 S[i]h
∑l

i=1 R[i] = gshr = �[0]

For each 1 ≤ i ≤ l , verify-share(�, i, S[i], R[i]) holds by definition. �
VSS-SOUNDNESS: Assume that discrete logarithms in Zp are hard and an ad-

versary is unable to compute logg h. Given p q, g , h, and verifiable sharing
(S, R, �), where �[0] is known to be gshr for some r ∈ Zq. If verify-vec(�)
holds and verify-share(�, i, S[i], R[i]) holds for each 1 ≤ i ≤ l , then, with high
probability, elements in S constitute an (l , l ) sharing of secret s.

PROOF SKETCH: Proof by contradiction. Assume
∑n

i=1 S[i] = s′ for some s′ �= s
and let r ′ = ∑n

i=1 R[i]. Because by construction of (S′, R ′, �′) gshr = gs′
hr ′

holds, the dealer is able to compute logg h = (s − s′)/(r ′ − r). This contradicts
the assumption on the hardness of computing logg h. �

VSS-CONFIDENTIALITY: Given public information p, q, g , h, and a verifiable shar-
ing (S, R, �). An adversary learns nothing about s from � and {(i, S[i], R[i]) |
1 ≤ i ≤ l , i �= j } for some 1 ≤ j ≤ l .

PROOF SKETCH: It suffices to show that given any secret s′ ∈ Zq we can
construct a verifiable secret sharing that differs from the given one only at the
j th verifiable share, which is the only verifiable share of (S, R, �) unknown to
an adversary.

Compute

(S′, R ′, �′) := transforms,s′, j (S, R, �)

An adversary cannot distinguish (S′, R ′, �′) from (S, R, �) because an adver-
sary has no access to the j th verifiable share. Therefore, an adversary learns
nothing about s. �

C. APSS Correctness Proof

Proving the correctness of APSS involves demonstrating that APSS Integrity,
APSS Availability, APSS Progress, and APSS Secrecy hold in the system de-
scribed in Section 2, where Asynchronous System, Secure Links, and t-Limit
Server Compromise hold.

C.1 APSS Integrity and APSS Availability

Assuming the existence of a secret reconstruction scheme that terminates as
long as l verifiable shares of the same label exists on some correct servers and
that it will reconstruct secret s as long as these l verifiable shares of the same
label constitute a verifiable sharing for s,16 we prove APSS Integrity and APSS
Availability.

16This assumption is reasonable because an entity wishing to reconstruct the secret can simply
send the request to all servers for verifiable shares stored on the servers, await verifiable shares
with the same label, check their validity, and reconstruct the secret from l valid shares.
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APSS INTEGRITY: At any time, with high probability, secret reconstruction re-
turns s when it terminates.

APSS AVAILABILITY: If messages sent during an execution of secret reconstruction
are delivered before a subsequent execution of share refreshing starts, then
that execution of secret reconstruction terminates.

PROOF SKETCH: For APSS Integrity, it suffices to show that, for each execution
of share refreshing and any label � that has been included in a valid done mes-
sage, the set of l shares with label λ on correct servers constitute an (l , l ) sharing
of secret s. For APSS Availability, it suffices to show that old shares and related
subshares are deleted only when there exists a new label � that has been
included in a valid done message and that every one of the l shares with label
� is stored on some correct server in the new window of vulnerability starting
from this execution of share refreshing. This suffices because of our assumption
on secret reconstruction—if messages for execution of secret reconstruction
are delivered before the next execution of share refreshing, then shares stored
on correct servers are not deleted before the execution of secret reconstruction
terminates.

Consider any new label �′ in a valid done message. A done message is valid
if and only if it contains a set of valid completed messages from 2t + 1 servers.
Because of t-limit Server Compromise, at least t + 1 of the 2t + 1 servers are
correct in the new window of vulnerability starting from this execution of share
refreshing. Each server p in the set P of those t +1 servers must have executed
step SS4 (Figure 6) and constructed the new shares in Ip for the new sharing
�′ from a set of l subsharings with labels {(�, i, λ

pi
i ) | 1 ≤ i ≤ l }.

Because a valid select message is necessary to trigger step SS4, each sub-
sharing with the label included in the select message is certified according to
Cert3 (Figure 4). This ensures that, for each subsharing labeled (�, i, λ

pi
i ), there

exist Si and Ri, such that the following hold:

verify-vec(�) (C.3)
verify-vec(λpi

i ) (C.4)
�[i] = λi[0] (C.5)

for each 1 ≤ j ≤ l , verify-share(λpi
i , j , Si[ j ], Ri[ j ]) (C.6)

Based on the construction of sharing �′ in step SS4, the following conditions
hold.

�[0] = �′[0] (C.7)

for each 1 ≤ j ≤ l , �′[ j ] =
l∏

i=1

λ
pi
i [ j ] (C.8)

for each 1 ≤ j ≤ l , S′[ j ] =
l∑

i=1

Si[ j ], R ′[ j ] =
l∑

i=1

Ri[ j ] (C.9)
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� verify-vec(�′) holds because
l∏

j=1

�′[ j ]

= Eq. (C.8)
l∏

j=1

l∏
i=1

λ
pi
i [ j ]

= (Transposition)
l∏

i=1

l∏
j=1

λ
pi
i [ j ]

= Eq. (C.4)
l∏

i=1

λ
pi
i [0]

= Eq. (C.5)
l∏

i=1

�[i]

= Eq. (C.3)
�[0]

= Eq. (C.7)
�′[0]

� For each 1 ≤ j ≤ l , let ( j , S′[ j ], R ′[ j ]) be the j th verifiable share computed
in SS4, verify-share(�′, j , S′[ j ], R ′[ j ]) holds because

g S′[ j ]hR ′[ j ]

= Eq. (C.9)
g

∑l
i=1 Si [ j ]h

∑l
i=1 Ri [ j ]

= (Transformation)
l∏

i=1

g Si [ j ]hRi [ j ]

= Eq. (C.6)
l∏

i=1

λ
pi
i [ j ]

= Eq. (C.8)
�′[ j ]

Due to VSS-Soundness, (i) {S′[i] | 1 ≤ i ≤ l } constitutes an (l , l ) sharing for
s and (ii) for every share S′[i] (1 ≤ i ≤ l ), there exists a correct server in P that
stores that share with the same label. Property (i) establishes APSS Integrity.

For an execution of share refreshing, a correct server deletes old shares and
the subshares generated from old shares in step SS6 (Figure 7) only when it
receives a valid done message containing some new label �′. Note that prop-
erties (i) and (ii) hold for any label in a valid done message. Therefore, due to
property (ii), APSS Availability holds. �
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C.2 APSS Progress

APSS PROGRESS: Execution of share refreshing terminates on all servers that
are correct during that execution of share refreshing; at termination, correct
servers have deleted old shares and any related information.

PROOF SKETCH: APSS Progress requires that, for each execution of share re-
freshing, all correct servers in the new window of vulnerability eventually reach
step SS6 (Figure 7).

Each execution of share refreshing belongs to two windows of vulnerability.
Call the first the old window of vulnerability and the second the new win-
dow of vulnerability. As an induction hypothesis, we assume that every correct
coordinator/server in the old window of vulnerability knows the label of an old
sharing and each of its l shares can be found on a correct server in the old
window of vulnerability. This induction hypothesis is initially true due to ini-
tialization by a trusted entity and it will remain true after each execution of
share refreshing, as we now prove.

It suffices to consider an instance of the protocol initiated by a correct co-
ordinator C in the old window of vulnerability. Such a coordinator must exist
because there are at least t + 1 coordinators and at most t of them are compro-
mised. There are two cases.

1. Coordinator C executes step SS6 after receiving a done message from another
server. In this case, C will propagate the done message to all servers. This
leads to termination of the execution of this share refreshing.

2. C never receives a done message from another server. However, C will at-
tempt to execute steps SS1 through SS5. Also, no correct servers delete old
shares/subshares in this case, because, if any correct server performs such
deletion in step SS6 of Figure 7, all correct servers including coordinator C
will receive a done message from that server—we are thus returning to the
first case. Let � be the label, known to C, of an old sharing, whose shares are
available on correct servers in the old window of vulnerability. Coordinator
C includes this label in the init message it sends in step SS1.

For each share of sharing labeled �, there exists one correct server that has
that share and that initiates subsharing certification protocol (step SS2a) for
this share. Due to Lemma 4.1, the subsharing certification protocol always
terminates. Therefore, C is guaranteed to receive a valid certified message
for a subsharing generated from each share of sharing � (sent in step SS2b).
Coordinator C thus must complete step SS3 and send a select message to
all servers.

For each correct server p that receives that select message, either p has
all the subshares needed to generate new shares or it invokes subsharing
recovery to retrieve missing shares (SS4). All selected subsharings are cer-
tified so, due to Lemma 4.3, a correct server eventually receives all needed
subshares and sends back a completed message to C (SS4). Because there
are at least 2t + 1 correct servers, coordinator C is guaranteed to receive
completed messages from 2t + 1 servers. Thus coordinator C will complete
step SS5. Because C sends a done message to all servers all correct servers
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will receive the message and execute step SS6 due to Secure Links, thereby
ensuring termination of this execution of share refreshing. Note that the la-
bel included in the done message corresponds to a verifiable sharing, whose
shares are stored on at least t + 1 correct servers in the new window of
vulnerability. The label is going to be used in the init message for the next
execution of share refreshing. �

C.3 APSS Secrecy

APSS SECRECY: An adversary learns nothing about secret s.

PROOF SKETCH: We show that for any given series of share refreshing execu-
tions χs for secret s and for any given secret ŝ ∈ Zq, we can construct a series of
share refreshing executions χŝ that is indistinguishable from χs to an adversary.
We also assume that encryption function E is semantically secure and that the
adversary is static.

Assign version number v to the vth execution of share refreshing and to
the window of vulnerability that spans from the start of this execution of
share refreshing to the end of the next. Let the period of time from the ini-
tial start of the system to the end of the first execution of share refreshing
to be window of vulnerability 0. Let Fv be the set of servers compromised
in a window of vulnerability v. Due to t-limit Server Compromise, |Fv| ≤ t
holds for 0 ≤ v. Eq. (4.2) states that there exists iv, such that 1 ≤ iv ≤ l
and iv �∈ Ip hold for any p ∈ Fv. Because iv is not in the index set for any
compromised server p, iv is the index of a share/subshare inaccessible to an ad-
versary. Therefore, changes to shares/subshares of index iv are invisible to an
adversary.

The construction of χŝ from χs is done inductively as follows:

BASE CASE: For the initial sharing (S, R, �) in χs, construct for χŝ a corre-
sponding sharing

(Ŝ, R̂, �̂) := transforms,ŝ,i0 (S, R, �)

Because (S, R, �) and (Ŝ, R̂, �̂) are identical except for S[i0] �= Ŝ[i0] and
R[i0] �= R̂[i0] and because i0 is not in the index set for any compromised
server in this window of vulnerability, an adversary cannot distinguish the two
sharings.

INDUCTION STEP: Consider window of vulnerability v with v > 0.

Induction Hypothesis: For each old sharing (S, R, �) generated in the (v−1)st
execution of share refreshing in χs,

1. There exists a corresponding sharing (Ŝ, R̂, �̂) in χŝ, such that
(Ŝ, R̂, �̂) = transforms,ŝ,iv−1

(S, R, �) holds.
2. An adversary cannot distinguish the sharings and subsharings gener-

ated in the (v − 1)st execution of share refreshing in χs and χŝ.

For convenience, we use extended label (Si, Ri, �, i, λi) to denote subsharing
(�, i, λi) generated from verifiable share (i, Si, Ri) of old sharing �. During the
vth execution of share refreshing, for each subsharing (Si, Ri, �, i, λi) of an old
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sharing in χs, construct a corresponding subsharing (Ŝi, R̂i, �̂, i, λ̂i) in χŝ as
follows.

(Ŝi, R̂i, �̂, i, λ̂i) =
{

(Si, Ri, �, i, λi) for i �= iv−1

transformS[i], Ŝ[i],iv (Si, Ri, λi) for i = iv−1

By definition of transform, we know that (Ŝi, R̂i, �̂, i, λ̂i) constitutes a veri-
fiable subsharing for Ŝ[i]. Also, the corresponding subsharings in the vth ex-
ecution of χs and χŝ are either identical or differ only at element iv. Note that
the vth execution of share refreshing belongs to window of vulnerability v.
Because we chose iv to be the index that falls out of the index sets of any
compromised server in this window of vulnerability, no compromised servers
during the execution of share refreshing have access to subshares with index iv.
Therefore, an adversary cannot distinguish the corresponding subsharings in χs
and χŝ.

Now consider the sharings. For each new sharing labeled �′ generated in
this execution of share refreshing of χs, let {(Si, Ri, �, i, λi) | 1 ≤ i ≤ l } be
the set of subsharings from which new sharing �′ is generated. In χŝ, we con-
struct a corresponding new sharing �̂′ from the corresponding set of subshar-
ings {(Ŝi, R̂i, �̂, i, λ̂i) | 1 ≤ i ≤ l }.

Due to the induction hypothesis, the old sharing labeled �̂ is a verifiable
sharing for ŝ. So is the new verifiable sharing �̂′. By construction in step SS4
(Figure 6), sharing �̂′ differs from �′ only at index iv. By choice of iv, an ad-
versary cannot distinguish sharing �̂′ from sharing �′. It is easy to verify that
(Ŝ′, R̂ ′, �̂′) = transforms,ŝ,iv (S

′, R ′, �′) holds. This completes the inductive con-
struction of χŝ. �
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