Hard-Core Bits

Definition: A predicate $b : \{0, 1\}^\gamma \rightarrow \{0, 1\}$ is hardcore for a function f if

(a) b is efficiently computable

(b) \forall p.p.t. A, \exists a negligible polynomial ϵ s.t.

$$\forall k \ Pr[X \leftarrow \{0, 1\}^k : A(1^k, f(X) = b(X))] \leq \frac{1}{2} + \epsilon(k)$$

Intuitively, a hardcore bit (described as a function b) is efficiently computable given an input x, but is hard to compute given only $f(x)$. In other words, f hides the bit b. This definition can be trivially extended to collections of one-way functions.

Construction of a PRG[1]

Using the idea of hardcore bits, and assuming the existence of a one-way permutation f we constructed in the previous lecture a PRG $G : \{0, 1\}^n \rightarrow \{0, 1\}^{n+1}$ given by

$$G(s) = f(s)||b(s)$$

where f is a one-way permutation and b is a hard core bit for f, and $||$ is the string concatenation operator. Intuitively, this is a PRG given that it passes the next-bit test since it would be hard to compute the $n+1^{th}$ bit $b(s)$ given the first n bits $f(s)$. However, this directly does not hold true of a OWF (Why? We might be proving that in an upcoming homework).

However, there is a theorem that says “\exists of a OWF $\iff \exists$ of a Pseudo-random number generator”[3]. We’ll prove the (supposedly easy) \iff direction in one of the homeworks.

Now, we’ll show in class that “\exists of a OWP $\Rightarrow \exists$ of a PRG”. Note that it is an open problem to prove that any OWF or a OWP has a hard core bit. What we’ll show is that every OWF (or OWP) can be transformed into a new OWF (respectively OWP) that has a hard-core bit.

One possibility of a hardcore bit is a parity function, but that might be easy to compute given $f(x)$. We’ll try something more sophisticated.

11-1
Theorem

Let f be a OWF. Then $f'(X, r) = f(X), r$ (where $|X| = |r|$) is a OWF and $b(X, r) = \langle X, r \rangle_2 = \Sigma X_i r_i \mod 2$ (inner product mod 2) is a hardcore predicate for f.

Here r essentially tells us which bits to take parity of. Note that f' is a OWP if f is a OWP.

Proof. (by reductio ad absurdum) We show that if A, given $f'(X, r)$ can compute $b(X, r)$ w.p. significantly better than $1/2 \Rightarrow \exists$ p.p.t. B that inverts f.

We’ll do the proof in three steps. In the first step, we consider a very oversimplified case and prove the theorem for that case. In the next step, we take a less simplified case and finally we take the general case.

In the very oversimplified case, we assume A always computes b correctly. And so, we can construct a f' with an r such that the first bit is 1 and the other bits are 0. In such a case A would return the first bit of X. Similarly, we can set the second bits of r to be 1 to obtain the second bit of X. Thus, we have B given by

$B(y)$: Let $X_i = A(y, e_i)$ where $e_i = 000 \ldots 1 \ldots 000$ where the 1 is on the i^{th} position.

-Output X_1, X_2, \ldots, X_n

This works, since $\langle X, e_i \rangle_2 = X_i$

Now, in the less simplified case, we assume that A, when given random $y = f(X)$ and random r, computes $b(X, r)$ w.p. $\frac{3}{4} + \epsilon$, ($\epsilon = \frac{1}{\text{poly}(n)}$, n is the length of X).

Intuition: we want the attacker to compute b with a fixed X and a varying r so that given enough observations, X can be computed eventually. The trick is to find the set of good X, for which this will work.

As an attempt to find such X, let $S = \{X | \Pr[A(f(X), r) = b(X, r)] > \frac{3}{4} + \frac{\epsilon}{2}\}$. It can be shown that $|S| > \epsilon/2$.

A simple attack with various e_i might not work here. More rerandomization is required.

Idea: Use linearity of $\langle a, b \rangle$.

Useful relevant fact: $\langle a, b \oplus c \rangle = \langle a, b \rangle \oplus \langle a, c \rangle \mod 2$

Proof.

\[
\langle a, b \oplus c \rangle = \Sigma a_i (b_i + c_i) = \Sigma a_i b_i + \Sigma a_i c_i = \langle a, b \rangle + \langle a, c \rangle \mod 2
\]

Attacker asks: $\langle X, r \rangle, \langle X, r + e_1 \rangle$
and then XOR both to get \(\langle X, e_1 \rangle \) without ever asking for \(e_1 \).

And so, \(B \) inverts \(f \) as follows: \(B(y) : \)

For \(i = 1 \) to \(n \)
1. Pick random \(r \) in \(\{0, 1\}^n \)
2. Let \(r' = e_i \oplus r \)
3. Compute guess for \(X_i \) as \(A(y, r) \oplus A(y, r') \)
4. Repeat \(\text{poly}(1/\epsilon) \) times and let \(X_i \) be majority of guesses.

Finally output \(X_1, \ldots, X_n \).

If we assume \(e_1 \) and \(r + e_1 \) as independent, the proof works fine. However, they are not independent. The proof is still OK though, as can be seen using the union bound:

The proof works because:

- w.p. \(\frac{1}{2} - \frac{\epsilon}{2} \) \(A(y, r) \neq b(X, r) \)
- w.p. \(\frac{1}{2} - \frac{\epsilon}{2} \) \(A(y, r') \neq b(X, r) \)
- by union bound w.p. \(\frac{1}{2} \) both answers of \(A \) are OK.
- Since \(\langle y, r \rangle + \langle y, r' \rangle = \langle y, r \oplus r' \rangle = \langle y, e_i \rangle \), each guess is correct w.p. \(\frac{1}{2} + \epsilon \)
- Since samples are independent, using Chernoff Bound it can be shown that every bit is OK w.h.p.

Now, to the general case. Here, we assume that \(A \), given random \(y = f(X) \), random \(r \) computes \(b(X, r) \) w.p. \(\frac{1}{2} + \epsilon \) (\(\epsilon = \frac{1}{\text{poly}(n)} \))

Let \(S = \{X | \Pr[A(f(X), r) = b(X, r)] > \frac{1}{2} + \frac{\epsilon}{2} \} \). It again follows that \(|S| > \frac{\epsilon}{2} \).

Assume set access to oracle \(C \) that given \(f(X) \) gives us samples

\[
\langle X, r_1 \rangle, r_1 \\
\vdots \\
\langle X, r_n \rangle, r_n
\]

(where \(r_1, \ldots, r_n \) are independent and random)

We now recall Homework 1, where given an algorithm that computes a correct bit value w.p. greater than \(\frac{1}{2} + \epsilon \), we can run it multiple times and take the majority result, thereby computing the bit w.p. as close to 1 as desired.

11-3
From here on, the idea is to eliminate C from the constructed machine step by step, so that we don’t need an oracle in the final machine B.

Consider the following $B(y)$:

For $i = 1$ to n
1. $C(y) \rightarrow (b_1, r_1), \ldots, (b_m, r_m)$
2. Let $r'_j = e_i \oplus r_j$
3. Compute $g_j = b_j \oplus A(y, r')$
4. Let $X_i = \text{majority}(g_1, \ldots, g_m)$

Output X_1, \ldots, X_m

Each guess g_i is correct w.p. $\frac{1}{2} + \frac{\epsilon}{2} = \frac{1}{2} + \epsilon'$. As in HW1, by Chernoff bound, an x_i is wrong w.p. $\leq 2^{-\epsilon'^2 m}$ (was $2^{-4\epsilon^2 m}$ in the HW). If $m >> \frac{1}{\epsilon^2}$, we are OK.

Now, we assume that C gives us samples $(X, r_1), r_1; \ldots; (X, r_n), r_n$ which are random but only pairwise independent. Again, using results from HW1, by Chebyshev’s theorem, each X_i is wrong w.p. $\leq \frac{1}{4m\epsilon^2} \leq \frac{1}{n\epsilon^2}$ (ignoring constants).

By union bound, any of the X_i is wrong w.p. $\leq \frac{n}{m\epsilon^2} \leq \frac{1}{2}$, when $m \geq \frac{2n}{\epsilon^2}$. Therefore, as long as we have polynomially many samples (precisely $\frac{2n}{\epsilon^2}$ pairwise independent samples), we’d be done.

The question now is: How do we get pairwise independent samples? So, our initial attempt to remove C would be to pick r_1, \ldots, r_m on random and guess b_1, \ldots, b_m randomly. However, b_i would be correct only w.p. 2^{-m}.

A better attempt is to pick $\log(m)$ samples $s_1, \ldots, s_{\log(m)}$ and guessing $b'_1, \ldots, b'_{\log(m)}$ randomly. Here the guess is correct with probability $1/m$.

Now, generate $r_1, r_2, \ldots, r_{m-1}$ as all possible sums (mod 2) of subsets of $s_1, \ldots, s_{\log(m)}$, and b_1, b_2, \ldots, b_m as the corresponding subsets of b'_i. Mathematically

\[
r_i = \sum_{j \in I_i} s_j \quad j \in I \text{ iff } i_j = 1
\]

\[
b_i = \sum_{j \in I'_i} b'_j
\]

In HW1, we showed that these r_i are pairwise independent samples. Yet w.p. $1/m$, all guesses for $b'_1, \ldots, b'_{\log(m)}$ are correct, which means that b_1, \ldots, b_{m-1} are also correct.
Thus, for a fraction of ϵ' of X' it holds that w.p. $1/m$ we invert w.p. $1/2$. That is $B(y)$ inverts w.p.

$$\frac{\epsilon'}{2m} = \frac{\epsilon'^3}{4n} = \frac{\epsilon/2)^3}{4n} \quad (m = \frac{2n}{\epsilon^2})$$

which contradicts the (strong) one-way-ness of f.

Yao proved that if OWF exists, then there exists OWF with hard core bits. But this construction is due to Goldreich and Levin[2] and by Charles Rackoff[3].

References

