3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities
Definition

$f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex if $\text{dom } f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \text{dom } f$, $0 \leq \theta \leq 1$

• f is concave if $-f$ is convex

• f is strictly convex if $\text{dom } f$ is convex and

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \text{dom } f$, $x \neq y$, $0 < \theta < 1$
Examples on \mathbb{R}

convex:

- affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- exponential: e^{ax}, for any $a \in \mathbb{R}$
- powers: x^α on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on \mathbb{R}, for $p \geq 1$
- negative entropy: $x \log x$ on \mathbb{R}_{++}

concave:

- affine: $ax + b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$
- powers: x^α on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}
Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on \mathbb{R}^n

- affine function $f(x) = a^T x + b$
- norms: $\|x\|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p}$ for $p \geq 1$; $\|x\|_{\infty} = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

- affine function

 $$f(X) = \text{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

- spectral (maximum singular value) norm

 $$f(X) = \|X\|_2 = \sigma_{\text{max}}(X) = (\lambda_{\text{max}}(X^T X))^{1/2}$$
Restriction of a convex function to a line

\[f : \mathbb{R}^n \to \mathbb{R} \] is convex if and only if the function \(g : \mathbb{R} \to \mathbb{R}, \)

\[g(t) = f(x + tv), \quad \text{dom} \: g = \{ t \mid x + tv \in \text{dom} \: f \} \]
is convex (in \(t \)) for any \(x \in \text{dom} \: f, \: v \in \mathbb{R}^n \)
can check convexity of \(f \) by checking convexity of functions of one variable

example. \(f : \mathbb{S}^n \to \mathbb{R} \) with \(f(X) = \log \det X, \: \text{dom} \: f = \mathbb{S}^n_{++} \)

\[g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2}) \]

\[= \log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i) \]

where \(\lambda_i \) are the eigenvalues of \(X^{-1/2}VX^{-1/2} \)

\(g \) is concave in \(t \) (for any choice of \(X \succ 0, \: V \)); hence \(f \) is concave

Convex functions
Extended-value extension

extended-value extension \tilde{f} of f is

$$\tilde{f}(x) = f(x), \quad x \in \text{dom } f, \quad \tilde{f}(x) = \infty, \quad x \not\in \text{dom } f$$

often simplifies notation; for example, the condition

$$0 \leq \theta \leq 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \leq \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbb{R} \cup \{\infty\}$), means the same as the two conditions

• $\text{dom } f$ is convex
• for $x, y \in \text{dom } f$,

$$0 \leq \theta \leq 1 \implies f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$
First-order condition

f is **differentiable** if $\text{dom } f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \ldots, \frac{\partial f(x)}{\partial x_n} \right)$$

exists at each $x \in \text{dom } f$

1st-order condition: differentiable f with convex domain is convex iff

$$f(y) \geq f(x) + \nabla f(x)^T(y - x) \quad \text{for all } x, y \in \text{dom } f$$

first-order approximation of f is global underestimator
Second-order conditions

\(f \) is **twice differentiable** if \(\text{dom } f \) is open and the Hessian \(\nabla^2 f(x) \in S^n \),

\[
\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \ldots, n,
\]

exists at each \(x \in \text{dom } f \)

2nd-order conditions: for twice differentiable \(f \) with convex domain

- \(f \) is convex if and only if
 \[
 \nabla^2 f(x) \succeq 0 \quad \text{for all } x \in \text{dom } f
 \]

- if \(\nabla^2 f(x) > 0 \) for all \(x \in \text{dom } f \), then \(f \) is strictly convex
Examples

quadratic function: $f(x) = (1/2)x^TPx + q^Tx + r$ (with $P \in S^n$)

$$\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = \|Ax - b\|_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \quad \nabla^2 f(x) = 2A^TA$$

convex (for any A)

quadratic-over-linear: $f(x, y) = x^2/y$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y & -x \\ -x & -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for $y > 0$
log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{1^T z} \text{diag}(z) - \frac{1}{(1^T z)^2} zz^T \quad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^T \nabla^2 f(x) v = \frac{(\sum_k z_k v_k^2)(\sum_k z_k) - (\sum_k v_k z_k)^2}{(\sum_k z_k)^2} \geq 0$$

since $(\sum_k v_k z_k)^2 \leq (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbb{R}^{n}_{++} is concave

(similar proof as for log-sum-exp)
Epigraph and sublevel set

α-sublevel set of $f : \mathbb{R}^n \rightarrow \mathbb{R}$:

$C_\alpha = \{ x \in \text{dom} \, f \mid f(x) \leq \alpha \}$

Sublevel sets of convex functions are convex (converse is false)

Epigraph of $f : \mathbb{R}^n \rightarrow \mathbb{R}$:

$\text{epi} \, f = \{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom} \, f, \, f(x) \leq t \}$

f is convex if and only if $\text{epi} \, f$ is a convex set
Jensen’s inequality

basic inequality: if f is convex, then for $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E} z) \leq \mathbf{E} f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\text{prob}(z = x) = \theta, \quad \text{prob}(z = y) = 1 - \theta$$
Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)

2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$

3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Convex functions
Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: $f(Ax + b)$ is convex if f is convex

examples

- log barrier for linear inequalities

\[
f(x) = - \sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{ x \mid a_i^T x < b_i, i = 1, \ldots, m \}
\]

- (any) norm of affine function: $f(x) = \|Ax + b\|$
Pointwise maximum

if \(f_1, \ldots, f_m \) are convex, then \(f(x) = \max\{f_1(x), \ldots, f_m(x)\} \) is convex

eexamples

- piecewise-linear function: \(f(x) = \max_{i=1,\ldots,m} (a_i^T x + b_i) \) is convex
- sum of \(r \) largest components of \(x \in \mathbb{R}^n \):

\[
f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]}
\]

is convex (\(x_{[i]} \) is \(i \)th largest component of \(x \))

proof:

\[
f(x) = \max\{x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n\}
\]
Pointwise supremum

if \(f(x, y) \) is convex in \(x \) for each \(y \in \mathcal{A} \), then

\[
g(x) = \sup_{y \in \mathcal{A}} f(x, y)
\]

is convex

examples

• support function of a set \(C \): \(S_C(x) = \sup_{y \in C} y^T x \) is convex

• distance to farthest point in a set \(C \):

\[
f(x) = \sup_{y \in C} \|x - y\|
\]

• maximum eigenvalue of symmetric matrix: for \(X \in \mathbb{S}^n \),

\[
\lambda_{\text{max}}(X) = \sup_{\|y\|_2=1} y^T X y
\]
Composition with scalar functions

composition of $g : \mathbb{R}^n \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$:

$$f(x) = h(g(x))$$

f is convex if g convex, h convex, \tilde{h} nondecreasing
g concave, h convex, \tilde{h} nonincreasing

• proof (for $n = 1$, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• note: monotonicity must hold for extended-value extension \tilde{h}

examples

• $\exp g(x)$ is convex if g is convex

• $1/g(x)$ is convex if g is concave and positive
Vector composition

composition of $g : \mathbb{R}^n \to \mathbb{R}^k$ and $h : \mathbb{R}^k \to \mathbb{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \ldots, g_k(x))$$

f is convex if g_i convex, h convex, \tilde{h} nondecreasing in each argument

g_i concave, h convex, \tilde{h} nonincreasing in each argument

proof (for $n = 1$, differentiable g, h)

$$f'''(x) = g'(x)^T \nabla^2 h(g(x)) g'(x) + \nabla h(g(x))^T g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive

- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex
Minimization

if $f(x,y)$ is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x,y)$$

is convex

examples

- $f(x,y) = x^T A x + 2x^T B y + y^T C y$ with

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0, \quad C \succ 0$$

minimizing over y gives $g(x) = \inf_y f(x,y) = x^T (A - BC^{-1} B^T)x$

g is convex, hence Schur complement $A - BC^{-1} B^T \succeq 0$

- distance to a set: $\text{dist}(x, S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex
the **perspective** of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the function $g : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x, t) = tf(x/t), \quad \text{dom } g = \{(x, t) \mid x/t \in \text{dom } f, \ t > 0\}$$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x, t) = x^T x/t$ is convex for $t > 0$
- negative logarithm $f(x) = -\log x$ is convex; hence relative entropy $g(x, t) = t \log t - t \log x$ is convex on \mathbb{R}^2_{++}
- if f is convex, then

$$g(x) = (c^T x + d) f \left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\}$
The conjugate function

class the \textbf{conjugate} of a function f is

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

- f^* is convex (even if f is not)
- will be useful in chapter 5

\[f(x) \]
\[x \]
\[(0, -f^*(y)) \]
examples

• negative logarithm \(f(x) = -\log x \)

\[
f^*(y) = \sup_{x>0} (xy + \log x)
= \begin{cases}
 -1 - \log(-y) & y < 0 \\
 \infty & \text{otherwise}
\end{cases}
\]

• strictly convex quadratic \(f(x) = (1/2)x^TQx \) with \(Q \in S^n_{++} \)

\[
f^*(y) = \sup_x (y^T x - (1/2)x^TQx)
= \frac{1}{2} y^T Q^{-1} y
\]
Quasiconvex functions

$f : \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if $\text{dom } f$ is convex and the sublevel sets

$$S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \}$$

are convex for all α

- f is quasiconcave if $-f$ is quasiconvex
- f is quasilinear if it is quasiconvex and quasiconcave
Examples

• $\sqrt{|x|}$ is quasiconvex on \mathbb{R}

• $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear

• $\log x$ is quasilinear on \mathbb{R}_{++}

• $f(x_1, x_2) = x_1x_2$ is quasiconcave on \mathbb{R}_{++}^2

• linear-fractional function

\[
f(x) = \frac{a^T x + b}{c^T x + d}, \quad \text{dom } f = \{x \mid c^T x + d > 0\}
\]

is quasilinear

• distance ratio

\[
f(x) = \frac{\|x - a\|_2}{\|x - b\|_2}, \quad \text{dom } f = \{x \mid \|x - a\|_2 \leq \|x - b\|_2\}
\]

is quasiconvex
internal rate of return

- cash flow $x = (x_0, \ldots, x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ and $x_0 + x_1 + \cdots + x_n > 0$
- present value of cash flow x, for interest rate r:

$$PV(x, r) = \sum_{i=0}^{n} (1 + r)^{-i} x_i$$

- internal rate of return is smallest interest rate for which $PV(x, r) = 0$:

$$\text{IRR}(x) = \inf\{r \geq 0 \mid PV(x, r) = 0\}$$

IRR is quasiconcave: superlevel set is intersection of halfspaces

$$\text{IRR}(x) \geq R \iff \sum_{i=0}^{n} (1 + r)^{-i} x_i \geq 0 \text{ for } 0 \leq r \leq R$$
Properties

modified Jensen inequality: for quasiconvex \(f \)

\[
0 \leq \theta \leq 1 \quad \implies \quad f(\theta x + (1 - \theta)y) \leq \max\{f(x), f(y)\}
\]

first-order condition: differentiable \(f \) with cvx domain is quasiconvex iff

\[
f(y) \leq f(x) \quad \implies \quad \nabla f(x)^T(y - x) \leq 0
\]

sums of quasiconvex functions are not necessarily quasiconvex
Log-concave and log-convex functions

A positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta)y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for } 0 \leq \theta \leq 1$$

f is log-convex if $\log f$ is convex

- powers: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$, log-concave for $a \geq 0$
- many common probability densities are log-concave, e.g., normal:

$$f(x) = \frac{1}{\sqrt{(2\pi)^n \det \Sigma}} e^{-\frac{1}{2}(x-\bar{x})^T \Sigma^{-1}(x-\bar{x})}$$

- cumulative Gaussian distribution function Φ is log-concave

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} \, du$$
Properties of log-concave functions

• twice differentiable f with convex domain is log-concave if and only if

$$f(x) \nabla^2 f(x) \preceq \nabla f(x) \nabla f(x)^T$$

for all $x \in \text{dom } f$

• product of log-concave functions is log-concave

• sum of log-concave functions is not always log-concave

• integration: if $f : \mathbb{R}^n \times \mathbb{R}^m \rightarrow \mathbb{R}$ is log-concave, then

$$g(x) = \int f(x, y) \, dy$$

is log-concave (not easy to show)
consequences of integration property

• convolution \(f \ast g \) of log-concave functions \(f, g \) is log-concave

\[
(f \ast g)(x) = \int f(x - y)g(y)dy
\]

• if \(C \subseteq \mathbb{R}^n \) convex and \(y \) is a random variable with log-concave pdf then

\[
f(x) = \text{prob}(x + y \in C)
\]

is log-concave

proof: write \(f(x) \) as integral of product of log-concave functions

\[
f(x) = \int g(x + y)p(y)dy, \quad g(u) = \begin{cases} 1 & u \in C \\ 0 & u \notin C \end{cases}, \quad p \text{ is pdf of } y
\]
example: yield function

\[Y(x) = \text{prob}(x + w \in S) \]

- \(x \in \mathbb{R}^n \): nominal parameter values for product
- \(w \in \mathbb{R}^n \): random variations of parameters in manufactured product
- \(S \): set of acceptable values

if \(S \) is convex and \(w \) has a log-concave pdf, then

- \(Y \) is log-concave
- yield regions \(\{x \mid Y(x) \geq \alpha\} \) are convex
Convexity with respect to generalized inequalities

\(f : \mathbb{R}^n \to \mathbb{R}^m \) is \(K \)-convex if \(\text{dom} \ f \) is convex and

\[
f(\theta x + (1 - \theta)y) \preceq_K \theta f(x) + (1 - \theta)f(y)
\]

for \(x, y \in \text{dom} \ f, \ 0 \leq \theta \leq 1 \)

example \(f : \mathbb{S}^m \to \mathbb{S}^m, \ f(X) = X^2 \) is \(\mathbb{S}^m_+ \)-convex

proof: for fixed \(z \in \mathbb{R}^m, \ z^T X^2 z = \|Xz\|^2_2 \) is convex in \(X \), i.e.,

\[
z^T(\theta X + (1 - \theta)Y)^2 z \leq \theta z^T X^2 z + (1 - \theta)z^T Y^2 z
\]

for \(X, Y \in \mathbb{S}^m, \ 0 \leq \theta \leq 1 \)

therefore \((\theta X + (1 - \theta)Y)^2 \preceq \theta X^2 + (1 - \theta)Y^2 \)