Empirical Methods in Information Extraction

By Claire Cardie

Presentation by Dusty Sargent

Background

- Domain-specific task differs from more general problems studied so far
- Summarizes important points in a text with respect to a target topic
- Structures information for storage into database

Background (cont’d)

- MUC (Message Understanding Conference) evaluates systems
- Provides answer keys and texts for particular topic
- Recall = (# correct slot fillers in output template) / (# of slot-fillers in answer key)
- Precision = (# correct slot fillers in output template) / (# of slot-fillers in output template)
- Has been used in practical applications

Applications

- Summarize medical records (test results, diagnoses, symptoms, etc.)
- Extract information about terrorist activities from radio or television broadcasts
- Keep records of corporate mergers and acquisitions
- Build knowledge bases from information found in websites
- Create job listings from web-based classified ads, job-search sites and newsgroups
Performance

- State of the art systems reach 50% recall and 70% precision on complicated extraction problems
- Can reach 90% precision and recall on the easiest extraction tasks
- Human error rate also high for information extraction
- Best systems have only twice error rate of human experts trained for same task
- Still a lot of room for improvement
- Time consuming development phase and cause of errors difficult to determine

Architecture

- Traditional NLP approach with full syntactic and semantic analysis of input text
- Less common simple approach with keyword matching and little linguistic analysis

```
Architecture (cont’d)
```

- Tagging and tokenization: divide input into sentences and words, part-of-speech tag and disambiguation word senses
- Sentence analysis: partial parse and tag with respect to semantic roles
- Extraction: identify relevant entities and relations between them, specific to the domain
- Merging: coreference resolution between extracted entities and events
- Template generation: map extracted information into domain specific output format

```
Corpus-based Learning
```

- Used for the underlying tasks of information extraction
- Can apply to preliminary stages of the architecture
- Difficulty in finding enough training data for all the levels of analysis required
- Expensive to retrain the system for each domain to which it must be applied
- Standard NLP learning techniques difficult to apply to later stages: learning extraction patterns, coreference resolution, template generation
- New training corpus needed for each task; difficult to learn general patterns from answer keys
Learning Extraction Patterns

- Use general pattern matching techniques for extraction phase
- Acquire good extraction patterns from training corpus with empirical methods
- Similar to Candidate Elimination Algorithm
- Extraction patterns ordered from general to specific, need balance between the two
- Need general patterns to apply to more than one case
- Patterns must be specific enough that they do not apply in the wrong context

AutoSlog

- One of earliest systems for learning extraction patterns, by Lehnert and Riloff (1992 - 1993)
- Learns “concept nodes”, domain-specific semantic frames, maximum of one slot per frame
- Concept nodes used with CIRCUS parser for the final extraction task

Sentence Two: “Witnesses confirm that the twister occurred without warning at approximately 7:15 p.m and destroyed two mobile homes.”

Concept Node Definition

- Concept = Damaged-Object
- Trigger = “destroyed”
- Position = direct-object
- Constraints = ([physical-object])
- Enabling Conditions = ((active-voice))

Instantiated Concept Node

- Damaged-Object = “two mobile homes”

Concept Node Definition

- Concept: the concept to be extracted, e.g. Damaged-Object
- Trigger: word that activates pattern
- Position: syntactic position where the concept is likely to be found in the sentence
- Constraints: constraints on argument at “Position” necessary for extraction to occur; can be hard or soft
- Enabling Conditions: constraints on linguistic context of trigger word

Example Application

- Example: “…the twister occurred at approximately 7:15pm and destroyed two mobile homes.”
- Concept is Damaged-Object
- Concept node is activated by trigger word “destroyed”
- Enabling Condition: “destroyed” occurs in active voice
- Position: direct-object of verb “destroyed”
- Constraints: direct-object of “destroyed” must be a physical object
- Result: “two mobile homes” is extracted to fill the Damaged-Object slot of the concept node
Concept Node Algorithm

- Concept nodes applied during partial parsing phase of the extraction system
- When trigger word encountered, check for enabling conditions
- If met, extract phrase in appropriate position
- Test phrase for constraints
- If constraints met, label phrase as instance of the concept type

Learning Concept Nodes

- Learning algorithm specific to domain
- Requires training text with noun phrases annotated with concept type, or uses answer keys
- Uses partial parse and small set of linguistic patterns to help learn concept nodes
- New version, AutoSlog-TS, only needs to be given texts marked as relevant or irrelevant to the domain of the extraction task

Learning Algorithm

- Find sentence in which target noun phrase occurs in training data
- Parse the sentence with partial parser
- Apply the list of linguistic patterns in order
- If a pattern linguistic pattern applies to the sentence, create a concept node definition from the appropriate elements of the sentence

Learning Example

- "Witnesses confirm that the twister occurred without warning at approximately 7:15pm and destroyed two mobile homes (Damaged_Object)".
- Target noun phrase is "two mobile homes", marked in training corpus as an instance of the concept Damaged_Object, or found in the Damaged_Object field in the answer key
- Step 1: find the above sentence in the training corpus, in which the target noun phrase occurs
- Step 2: parser determines that "two mobile homes" was the direct object of active verb "destroyed" in the third clause
- Step 3: match third clause to the following linguistic pattern: <active-voice-verb> followed by <target-np> = <direct-object>
- Step 4: generate the concept node seen previously from matched constituents, context, concept type, and semantic class
AutoSlog-TS
- Improved version needs only relevant and irrelevant texts as training data
- Adapts AutoSlog to use statistical techniques
- Nearly matches performance of AutoSlog on MUC 4 extraction task, using a fraction of the human effort
- Scans corpus once and generates an extraction pattern for every noun phrase
- Scans again and ranks extraction patterns according to some ranking function

PALKA
- Learns extraction patterns similar to concept nodes using a different method
- Uses a concept hierarchy, predefined set of trigger words, and semantic class lexicon
- Concept hierarchy contains generic semantic case frames for each concept
- Looks for sentences in corpus containing keywords, and fills case frame slots using semantic class information

CRYSTAL
- Uses more complex patterns in the form of semantic case frames
- Triggers are detailed descriptions of linguistic context of target noun phrase
- Can test for specific sequences of words or types of related constituents
- Learns patterns by generalizing input examples until an error threshold is reached
- Begin by generating most specific possible patterns and gradually relax constraints

Other Systems
- LIEP recognizes relationships between two target noun phrases that fill slots in the output template
- RAPIER generalizes from an input set of patterns, but operates at word level, unlike CRYSTAL
- Existing methods only work well at extracting noun phrases
- Few methods have been evaluated under similar conditions
- Difficult to compare and determine advantages of different approaches
Coreference Resolution

- The most difficult pre-processing task for information extraction systems
- Less research for coreference resolution and template generation than for learning extraction patterns

Different methods needed to handle each linguistic type of reference
Coreference resolution is the major weak point of most modern information extraction systems
Many systems use heuristics, but difficult to cover all possible cases
Often, heuristics require detailed parses, which most extraction systems do not provide
Accumulated errors from earlier parsing and variety of domains adds to difficulty

Empirical Methods

- Do not need to make specific learning methods for this task as with learning extraction patterns
- Can cast coreference resolution as a classification problem and use existing inductive learning methods
- Given two noun phrases and their contexts, classify as positive if they refer to the same object, negative if they do not
- Use inductive learning to automatically derive coreference resolution heuristics

General Approach

- Step 1: link all coreferential phrases via annotations in the training corpus
- Step 2: create positive and negative training examples from all possible pairs in the corpus
- Step 3: annotate examples with features relating to their contexts and classes
- Step 4: use learning algorithm to derive a classifier based on the examples, often use decision trees for this purpose
- Systems have been compared at the MUC coreference competition

[Motor Vehicles International Corp.] announced a major management shake-up ... [MVI] said the chief executive officer has resigned ... [The Big 10 auto maker] is attempting to regain market share ... [It] will announce significant losses for the fourth quarter ... A [company] spokesman said [they] are moving [their] operations to Mexico in a cost-saving effort. ... [MVI, the first company to announce such a move since the passage of the new international trade agreement] is facing increasing demands from unionized workers. ... [Motor Vehicles International] is [the biggest American auto exporter to Latin America].
MLR (Machine Learning based Resolver)

- Uses C4.5 decision tree learning algorithm
- Derives feature set from earlier parsing stages
- Uses a data set derived automatically by its information extraction system
- Instances are described in terms of domain-independent linguistic features
- Tested on MUC-6 coreference resolution tasks using Japanese business joint ventures corpus
- Scored recall of 67-70% and precision of 83-88% on MUC-6 coreference resolution tasks

Resolve

- Also uses C4.5 decision tree learning algorithm and derives features from earlier parsing stages
- Has advantage because it uses manually annotated training data
- Features are very domain specific
- Tested on the English version of the business joint ventures corpus, contains 74% negative examples
- Scored 80-85% recall and 87-92% precision at MUC-6 conference
- Less labor intensive than manually coded coreference algorithms

Results/Research

- Possible to make automatically trained systems that approach performance of manually coded systems
- No need to develop specific algorithms for coreference resolution
- Need to test different feature sets, hopefully domain-independent features
- Need to determine the effect of using domain specific information and test outside of the information extraction domain
- Determine effects of errors in earlier stages

Future Directions

- Information extraction is a relatively new sub field of natural language processing
- Use statistical methods to avoid the need for large amounts of domain-specific training data
- Develop domain-independent systems that do not need to be retrained for new each extraction task
- Many algorithms exist, but there is little training data available and it is expensive to produce a new corpus for each task
Future Directions (cont’d)

- Partial solution to making domain-independent systems: build systems that end user can train by themselves for new tasks
- For this goal, need algorithms that can fully specify an extraction system using just answer keys
- Demand by industry, military, etc. for practical systems increases with the amount of online text
- To meet demand, must eventually make systems that work autonomously and can handle any domain without tuning