Lecture 16: Bag-of-words models
Large-scale image matching

Turn 1,000,000 images of Rome...
...into 3D models

Colosseum

St. Peter’s Basilica

Trevi Fountain
Image matching

• Brute force approach:

 • 250,000 images \rightarrow \sim 31 billion image pairs
 – 2 pairs per second \rightarrow 1 year on 500 machines

 • 1,000,000 images \rightarrow 500 billion pairs
 – 15 years on 500 machines
Image matching

• For city-sized datasets, fewer than 0.1% of image pairs actually match

• Key idea: only consider *likely* matches

• How do we know if a match is likely?

• Solution: use fast global similarity measures
 – For example, a *bag-of-words* representation
Object → Bag of ‘words’
Origin 1: Texture Recognition

Example textures (from Wikipedia)
Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Origin 1: Texture recognition

Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Origin 2: Bag-of-words models

Origin 2: Bag-of-words models

US Presidential Speeches Tag Cloud
http://chir.ag/phernalia/preztags/
Origin 2: Bag-of-words models

- Orderless document representation: frequencies of words from a dictionary
 Salton & McGill (1983)
Bags of features for object recognition

- Works pretty well for image-level classification and for recognizing object *instances*

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)
Bags of features for object recognition

Caltech6 dataset

<table>
<thead>
<tr>
<th>class</th>
<th>bag of features</th>
<th>bag of features</th>
<th>Parts-and-shape model</th>
</tr>
</thead>
<tbody>
<tr>
<td>airplanes</td>
<td>98.8</td>
<td>97.1</td>
<td>90.2</td>
</tr>
<tr>
<td>cars (rear)</td>
<td>98.3</td>
<td>98.6</td>
<td>90.3</td>
</tr>
<tr>
<td>cars (side)</td>
<td>95.0</td>
<td>87.3</td>
<td>88.5</td>
</tr>
<tr>
<td>faces</td>
<td>100</td>
<td>99.3</td>
<td>96.4</td>
</tr>
<tr>
<td>motorbikes</td>
<td>98.5</td>
<td>98.0</td>
<td>92.5</td>
</tr>
<tr>
<td>spotted cats</td>
<td>97.0</td>
<td>—</td>
<td>90.0</td>
</tr>
</tbody>
</table>
Images as histograms of visual words

- Inspired by ideas from text retrieval
 - [Sivic and Zisserman, ICCV 2003]
Bag of features: outline

1. Extract features
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
Bag of features: outline

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”
1. Feature extraction

Compute SIFT descriptor
[Low '99]

Normalize patch

Detect patches
[Mikojaczyk and Schmid '02]
[Mata, Chum, Urban & Pajdla, '02]
[Sivic & Zisserman, '03]

Slide credit: Josef Sivic
1. Feature extraction
2. Learning the visual vocabulary
2. Learning the visual vocabulary

Clustering
2. Learning the visual vocabulary

Clustering

Visual vocabulary

Clustering
K-means clustering

- Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X, M) = \sum_{cluster_k} \sum_{point i in cluster k} (x_i - m_k)^2$$

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it
Example visual vocabulary

Fei-Fei et al. 2005
Image patch examples of visual words
Visual vocabularies: Issues

• How to choose vocabulary size?
 • Too small: visual words not representative of all patches
 • Too large: quantization artifacts, overfitting

• Generative or discriminative learning?

• Computational efficiency
 • Vocabulary trees
 (Nister & Stewenius, 2006)
3. Image representation

frequency

... codewords...
Image classification

• Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Uses of BoW representation

• Treat as feature vector for standard classifier
 – e.g k-nearest neighbors, support vector machine

• Cluster BoW vectors over image collection
 – Discover visual themes
K nearest neighbors

- For a new point, find the k closest points from training data
- Labels of the k points “vote” to classify
- Works well provided there is lots of data and the distance function is good

$k = 5$

Source: D. Lowe
Linear classifiers

• Find linear function (hyperplane) to separate positive and negative examples

\[\mathbf{x}_i \text{ positive: } \mathbf{x}_i \cdot \mathbf{w} + b \geq 0 \]

\[\mathbf{x}_i \text{ negative : } \mathbf{x}_i \cdot \mathbf{w} + b < 0 \]

Which hyperplane is best?
Support vector machines

• Find hyperplane that maximizes the margin between the positive and negative examples

Support vector machines

• Find hyperplane that maximizes the margin between the positive and negative examples

\[x_i \text{ positive } (y_i = 1) : \quad x_i \cdot w + b \geq 1 \]
\[x_i \text{ negative } (y_i = -1) : \quad x_i \cdot w + b \leq -1 \]

For support, vectors, \[x_i \cdot w + b = \pm 1 \]
Large-scale image matching

• Bag-of-words models have been useful in matching an image to a large database of object *instances*

11,400 images of game covers (Caltech games dataset) how do I find this image in the database?
Large-scale image search

• Build the database:
 – Extract features from the database images
 – Learn a vocabulary using k-means (typical k: 100,000)
 – Compute *weights* for each word
 – Create an inverted file mapping words ➔ images
Weighting the words

• Just as with text, some visual words are more discriminative than others

 the, and, or vs. cow, AT&T, Cher

• the bigger fraction of the documents a word appears in, the less useful it is for matching
 – e.g., a word that appears in all documents is not helping us
TF-IDF weighting

• Instead of computing a regular histogram distance, we’ll weight each word by it’s inverse document frequency

inverse document frequency (IDF) of word \(j = \log \frac{\text{number of documents}}{\text{number of documents in which } j \text{ appears}} \)
TF-IDF weighting

• To compute the value of bin j in image l:

$$\text{term frequency of } j \text{ in } l \times \text{inverse document frequency of } j$$
Inverted file

• Each image has ~1,000 features
• We have ~1,000,000 visual words
 → each histogram is extremely sparse (mostly zeros)

• Inverted file
 – mapping from words to documents

```json
"a": {2}
"banana": {2}
"is": {0, 1, 2}
"it": {0, 1, 2}
"what": {0, 1}
```
Inverted file

• Can quickly use the inverted file to compute similarity between a new image and all the images in the database
 – Only consider database images whose bins overlap the query image
Large-scale image search

• Pros:
 – Works well for CD covers, movie posters
 – Real-time performance possible

real-time retrieval from a database of 40,000 CD covers
Nister & Stewenius, *Scalable Recognition with a Vocabulary Tree*
Image matching
Faster image matching

1. For each image, find the 40 most similar vectors
 (reduces # comparisons from \(\sim n^2/2 \) to <40n)
2. Do detailed SIFT matching to verify each pair
 (this is the most time-consuming part)
3. Use *query expansion* to densify the graph
Example bag-of-words matches

Query image

Top 16 matches
Example bag-of-words matches

Query image

Top 16 matches
Example bag-of-words matches

Query image

Top 16 matches
Matching - Round 1

Initial graph after matching each image to top 10 other images
Query Expansion

Chum et al, ICCV 2007
Matching - Round 1
Matching - Round 2
Matching - Round 3
Matching - Round 4

![Graph and chart showing matching progress over rounds.

- Pairs Verified
- Matched Pairs Found

Legend:
- Red line: Pairs Verified
- Black dotted line: Matched Pairs Found

Rounds of Matching: 1 to 6]
Matching - Round 5

[Graph showing network and line chart]

- Red line: Pairs Verified
- Black dashed line: Matched Pairs Found

Rounds of Matching

1 2 3 4 5 6
Matching - Round 6
Matching Statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Matches possible</th>
<th>Matches Tried</th>
<th>Matches Found</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik</td>
<td>58K</td>
<td>1.6 Billion</td>
<td>2.6M</td>
<td>0.5M</td>
<td>5 hrs</td>
</tr>
<tr>
<td>Rome</td>
<td>150K</td>
<td>11.2 Billion</td>
<td>8.8M</td>
<td>2.7M</td>
<td>13 hrs</td>
</tr>
<tr>
<td>Venice</td>
<td>250K</td>
<td>31.2 Billion</td>
<td>35.5M</td>
<td>6.2M</td>
<td>27 hrs</td>
</tr>
</tbody>
</table>
What about spatial info?