Deformation Constraints in a Mass-Spring Model to Describe Rigid Cloth Behavior

Xavier Provot, 1995

Jeff Budsberg • April 12, 2005 • Cornell University
Early Work in Cloth

• Geometric models
 – Do not consider cloth’s physical properties
 – focus on appearance (particularly folds and creases)
 – Jerry Weil, 1986

• Physical models
 – Various structural studies are done and cloth’s intrinsic behavior is attempted to be simulated
 – C. Feynman, 1986
 – Demetri Terzopoulos et al, 1987
Early Work in Cloth

- Particle models
 - Explicitly represents the microstructure of woven cloth with interacting particles
 - David Breen et al., 1994
Jerry Weil

- Probably the first person to model cloth in any method whatsoever
- A cable under self-weight forms a catenary curve at equilibrium
- A cloth hanging from a discrete number of points can be described by a system of these curves

\[y = a \cosh(x/b) \]
Jerry Weil

Surface Approximation

6 Iterations of Relaxation

Spline Fit
C. Feynman

- Represented cloth in a 3D space by using a 2D grid
- The energy for each point is calculated in relation to its surrounding points
- The final position of cloth was derived based on the minimization of energy

\[E(P_{i,j}) = k_s E_{elastic(i,j)} + k_b E_{bending(i,j)} + k_g E_{gravitational(i,j)} \]
Demetri Terzopoulous

- Introduced a deformable model intended for generalized flexible objects
- Does not consider weave of the cloth, but only one internal elastic force
- Uses the Lagrange equation of motion to determine the equilibrium
Demetri Terzolpoulos
Motives

• Woven fabrics are far from having ideal elastic properties
• Physically-based, elastically-deformable models somewhat successful (“super-elastic” problem)
• Attempts at other methods:
 – Network of rigid rods of a fixed length (shearing, slow)
 – Particle system (static, slow)
Cloth Grid Mesh

Structural springs, resist stretching stresses
Sheer springs, resist sheering stresses
Flexion springs, resist bending stresses
Dynamics and Forces

- Once a mass-spring grid has been created, forces are applied to the nodes to generate an animation.
- The system is the mesh of \(m \times n \) masses, each mass with position at time \(t \) given by \(P_{i,j}(t) \).
- The evolution of the system is governed by the fundamental law of dynamics:

\[
F_{i,j} = \mu a_{i,j}
\]

where \(\mu \) is the mass at point \(P_{i,j}(t) \), and \(a_{i,j} \) is the acceleration caused by the force \(F_{i,j} \).
- \(F_{i,j} \) can be divided into internal and external forces.
Internal Force

• Tensions of interconnected springs

Which are described by Hooke’s Law:

\[F = k \cdot u \]

where \(F \) is the applied force, \(u \) is the deformation (displacement from equilibrium) of the elastic body subjected to the force \(F \), and \(k \) is the spring constant.
Internal Force

- In our case, this force is basically the sum of the change in point vectors multiplied by the spring stiffness for each neighbor of each point.

\[
F_{int}(P_{i,j}) = - \sum_{(k,l) \in \mathcal{R}} K_{i,j,k,l} \left[l_{i,j,k,l}^0 - l_{i,j,k,l}^0 \frac{l_{i,j,k,l}}{\|l_{i,j,k,l}\|} \right]
\]

- \(\mathcal{R}\) is the set regrouping all couples \((k,l)\) such as \(P_{k,l}\) is linked by a spring to \(P_{i,j}\),

- \(l_{i,j,k,l} = \overrightarrow{P_{i,j}P_{k,l}}\),

- \(l_{i,j,k,l}^0\) is the natural length of the spring linking \(P_{i,j}\) and \(P_{k,l}\),

- \(K_{i,j,k,l}\) is the stiffness of the spring linking \(P_{i,j}\) and \(P_{k,l}\).
External forces

• Force of gravity

\[F_{gr}(P_{i,j}) = \mu g \]

where \(g \) is the acceleration of gravity

• Viscous damping

\[F_{dis}(P_{i,j}) = -C_{dis}v_{i,j} \]

where \(C_{dis} \) is the damping coefficient and \(v_{i,j} \) is the velocity at point \(P_{i,j} \).
External forces

- **Viscous fluid (wind)**

\[
F_{vi}(P_{i,j}) = C_{vi} [n_{i,j} \cdot (u_{\text{fluid}} - v_{i,j})] n_{i,j}
\]

where \(u_{\text{fluid}} \) is a viscous fluid with uniform velocity, \(v_{i,j} \) is the velocity at point \(P_{i,j} \), \(n_{i,j} \) is the unit normal at \(P_{i,j} \), and \(C_{vi} \) is the viscosity constant.

- **The net force** acting on any node in the mass-spring model is the **sum of the above forces** for that node.
Integration

• To generate animation of cloth, it is necessary to compute the location of the nodes for a series of time steps.

• Provot uses a simple Euler method to approximate the fundamental equation of dynamics.

\[
\begin{align*}
 a_{i,j}(t + \Delta t) &= \frac{1}{\mu} F_{i,j}(t) \\
 v_{i,j}(t + \Delta t) &= v_{i,j}(t) + \Delta t \ a_{i,j}(t + \Delta t) \\
 P_{i,j}(t + \Delta t) &= P_{i,j}(t) + \Delta t \ v_{i,j}(t + \Delta t)
\end{align*}
\]
Forward Euler

- In this method, the position of the nodes in the next time step are computed using only past information.
Forward Euler Error

- Explicit integration has numerous problems including instability at large time steps and slow propagation of the effects of forces over the cloth material.
Dynamic Inverse Procedures

• Some cases where cloth movement is not entirely caused by analytically computed forces (contact problems)
• So far, we can compute displacement of a point due to a force applied to it, but we can solve the inverse problem for hanging points
• A similar procedure can be used to deal with object collisions and self-intersection, though not covered in this paper (Provot 97)
Collision Detection

• Collisions of two types
 – Point-triangle collision
 – Edge-edge collision
• At a time where a collision is detected, a physics-based response is calculated
• Accurate, but limited in that all nodes are assumed to have constant velocity
• Successful in simulating draping
• Problems with sliding contact and jittering
The “Super-Elastic” Effect

Initial position

After 200 iterations
The “Super-Elastic” Effect

- Case study: subject to gravity, but no wind
- Concentration of local deformations
- Deformation rate decreases very rapidly
- **Real-world problem:** such a deformation never occurs since real woven fabrics have non-linear elasticity (and tear when high loads are applied)

1) The deformation rate is defined as \(\tau = \frac{l - l_0}{l_0} \)
where \(l_0 \) is the natural spring length and \(l \) is its length at any time \(t \)
Increasing Stiffness

• Stiffer springs should lower the deformation rate
• For a given time step Δt and mass μ, there is a critical stiffness value K_c above which the numerical resolution of the system is divergent
• Thus, the maximum Δt is equal to the natural period of a simple harmonic oscillator (mass on a spring):

$$T_0 \approx \pi \sqrt{\frac{\mu}{K}}$$

$$\implies K_c \approx m \frac{T_0^2}{\pi^2}$$
Increasing Stiffness

- If we want to increase stiffness, we have to decrease Δt below the new decreased value of T_0
- Need new method to avoid the superelastic effect, without decreasing Δt
Constraints on Deformation Rates

• Assume that the direction of the elongated spring is correct, but limit it to a critical deformation rate \((\tau_c) \)

\[
\text{for } (\Delta t++) \\
\text{Compute every } \tau \\
\text{if } (\epsilon \tau \| \tau > \tau_c) \\
\tau = \tau_c
\]
Constraints on Deformation Rates

Adjustment of super-elongated spring linking two loose masses

Adjustment of super-elongated spring linking a fixed and a loose mass
Hanging Sheet Results

\[r_c (\text{structural}) = 10\% \]
\[r_c (\text{flexion}) = 0\% \]

\[r_c (\text{structural/shear}) = 10\% \]
\[r_c (\text{flexion}) = 0\% \]
Hanging Sheet Comparison

On the left: a stiff elastic model computed in 9 min.
On the right: new model computed in 1 min.
Flag in a Strong Wing

Semi-rigid flag and elastic flag when stiffness is low

Semi-rigid flag remains stable when stiffness is increased
Wind in a Sail

Hangs by 8 points on the upper rod and is ties to 2 points on the lower rod
Disadvantages

• Diverges from strictly physics-based simulation
• Dependent on the order in which the springs are examined
• Correcting one spring may overextend another
• Reiterative process does not always converge to a completely non-extended state
Advantages

• Produces realistic-looking output in most cases
• The time constant does not need to be reduced to match higher spring constants
• Can use an order of magnitude large time step
• 90% reduction in running time of the simulation according to the author
• Thus this model sacrifices a tolerable amount of accuracy for a dramatic speed improvement
Summary

- A physically-based model for animating cloth objects
- Derived from elastically-deforming models, but takes into account non-elastic properties of woven fabrics
- Cloth object approximated with a deformable surface network of masses and springs
- Dynamic inverse procedure to correct for unrealistic local deformation about the boundary conditions.