CS664 Lecture #3: Density estimation in vision

Some slides taken from:

- David Lowe et al.
 www.cs.ubc.ca/~lowe/425/slides/11-Classifiers.ppt
Announcements

- Lecture notes are on the web
- First quiz will be on Thursday
 - Coverage through today’s lecture
- We will use CMS, the Course Management System
 - We’ll be setting this up soon
- Guest lecture a week from Tuesday by Bryan Kressler
 - We’ll have a few of these over the semester
Last lecture we saw:

- Trigrams are an elegant way to generate text
 - Density estimation and sampling
- Same basic idea used by Efros & Leung to perform texture synthesis
 - Some surprisingly good results
- Parametric density estimation
 - i.e., fitting the data with a Gaussian
- Non-parametric density estimation
 - i.e., using a histogram
Density estimation

CD Rates

Percent

True density
Histogram representation

Histogram 10 bins

Histogram 20 bins

Histogram 90 bins
Histogram-based estimates

- You can use a variety of fitting techniques to produce a curve from a histogram
 - Lines, polynomials, splines, etc.
 - Also called regression/function approximation
 - Normalize to make this a density

- If you know quite a bit about the underlying density you can compute a good bin size
 - But that’s rarely realistic in vision
 - And defeats the whole purpose of the non-parametric approach
Nearest-neighbor estimate

- To estimate the density, count the number of nearby data points
 - Like histogramming with sliding bins
 - Avoid bin-placement artifacts

\[\hat{\rho}(x) = \frac{\# \{ x_i \mid \| x_i - x \| \leq \epsilon \}}{n} \]

- We can fix \(\epsilon \) and compute this quantity, or we can fix the quantity and compute \(\epsilon \)
Parzen estimation

- Each observed datapoint increases our estimate of the probability nearby
 - Simplest case: raise the probability uniformly within a fixed radius
 - Place a fixed-height “box” at each datapoint, add them up to get the density estimate
 - This is nearest neighbor with fixed ϵ

- More generally, you can use some slowly decreasing function (such as a Gaussian)
 - Called the *kernel*
Parzen example

from Hastie et al.
Importance of scale
Can we store histograms of 11-by-11 patches?
- How many such patches are there?
 - 256^{121} is a lot ($> 10^{240}$)

They don’t quite do density estimation
- The method is procedural
 - And slightly ad hoc
- But the effect is close to Parzen estimation
 - With some kind of unusual kernel

This would be a natural follow-up paper
Computing local modes

- Often we don’t need the entire density
 - Vision often has very high #/dimensions
- Suppose that we could find the nearest local maximum (mode)
 - Doing this repeatedly gives a simple clustering scheme
 - There is an elegant way to do this
 - One of the more successful methods in vision
Mean shift algorithm

- Non-parametric method to compute the nearest mode of a distribution
 - Density increases as we get near "center"
Image and histogram
Local modes
Mean shift segmentations

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
Back to density estimation

- Many density estimates for same data
 - E.g., different Parzen windows, or mean
 - Is there a natural sense in which one estimate might be “optimal”?

- Maximum likelihood principle
 - If a particular hypothesized density were correct, it would have some probability of resulting in the data we observed
 - Pick the hypothesis with the largest likelihood
ML estimate of the mean

- Consider parametric density estimation with a Gaussian
 - What choice of mean μ and width σ maximizes the likelihood?

- Need to be a little more precise
 - What does it mean to say that a particular density actually generated the data we saw?
What is a density?

- Consider an arbitrary function \(p \) such that

\[
p(x) \geq 0
\]

- Can view it as a *probability density function*
 - The PDF for a real-valued random variable
 - If we asked \(\infty \) banks, what frequency of CD rates would we get?

\[
p(x)
\]
Interpreting densities

- The value of the PDF p at x is not the probability we would get rate x
 - Which is always zero (think about it!)
 - Instead, p gives the probability of getting a rate in a given interval $p(x)$

\[
\int_{\alpha}^{\beta} p(x) \, dx = \Pr[\alpha \leq \text{Rate} \leq \beta]
\]
Discrete case is easier

- If the values of the random variable are discrete, things are simpler
 - Instead of a PDF you have a probability mass function (PMF)
 - I.e., a histogram whose entries sum to 1
 - No bucket has a value greater than 1
- This is the true relative frequencies (i.e., what we would get in the limit)
 - What is the bin size of the PMF histogram?
Sampling from a PDF

- Suppose we call up a number of banks and get their CD rates
 - This generates our *sample* (data set)
 - How does this relate to the true PDF?

- It simplifies life considerably to assume:
 - All the banks generate their rates from the same PDF (identical distributions)
 - There is no effect between the rate you get from one bank and another (independence)
Sample likelihood

\[p(x) \]
Definition of likelihood

- Intuition: the true PDF should not make the sample (data) you saw a “fluke”
 - It’s possible that the coin is fair even though you saw 10^6 heads in a row...

- The likelihood of a hypothesis is the probability that it would have resulted in the data you saw
 - Think of the data as fixed, and try to chose among the possible PDF’s