CS664 Lecture #23: Curve evolution, active contour models

Some material taken from:

- Yuri Boykov, Western Ontario
- Nikos Paragios, Ecole Centrale de Paris
 http://cermics.enpc.fr/~paragios/tutorial.ppt
Announcements

- Paper report due today (11/15)
- 1-paragraph final project description due by email on 11/23
- Final quiz will be on 11/29
- PS3 will be out soon, due Friday 12/2
- Final project will be due Thursday 12/15
Parts-based Face Detection

- Five parts: eyes, tip of nose, sides of mouth
- Each part a local image patch
 - Represented as response to oriented filters
 - 27 filters at 3 scales and 9 orientations
 - Learn coefficients from labeled examples
- Parts translate with respect to central part, tip of nose
Face Detection Results

- Runs at several frames per second
 - Compute oriented filters at 27 orientations and scales for part cost m_i
 - Distance transform m_i for each part other than central one (nose tip)
 - Find maximum of sum for detected location
General case via DP

- Want to minimize $\sum_V m_j(l_j) + \sum_E d_{ij}(l_i, l_j)$ over (V, E)
- Can express this as a function $B_j(l_i)$
 - Cost of best location of v_j given location l_i of v_i
- Recursion in terms of children C_j of v_j
 - $B_j(l_i) = \min_{l_j}(m_j(l_j) + d_{ij}(l_i, l_j) + \sum_{C_j} B_{C_j}(l_j))$
 - For leaf node no children, so last term empty
 - For root node no parent, so second term empty
Further optimization via DT

- This recurrence can be solved in time $O(ns^2)$ for s locations, n parts
 - Still not practical since s is in the millions
- Couple with distance transform method for finding best pair-wise locations in linear time
 - Resulting $O(ns)$ method!
Example: Finding People

- Ten part 2D model
 - Rectangular regions for each part
 - Translation, rotation, scaling of parts
- Configurations may allow parts to overlap

Image Data | Likely Configurations | Best Match
More examples
DP on curves

- For most of this course we’ve focused on energy minimization over an **image**
 - We can also compute the energy of a **curve**
 - Important special case: energy = length

- **Curve representations**
 - Control points (spline)
 - Set of edges in a graph
 - Continuous parameterizations

- DP is largely restricted to 1D objects, so it’s a natural match for curves
Shortest paths segmentation

- “Intelligent scissors” or “Live wire”
 - Shortest paths on image graph connect seeds, which the user places on the boundary
Minimizing user interaction

- Suppose we only know roughly where the object is. Can we do without seed points?

 - Minimize over starting points on the gray band
Active contours (snakes)

- Start with a curve near the object
 - **Evolve** the curve to fit the boundary
 - Sample application: tracking
 - Input for t+1 = output from t
Snake energy function

- Energy function on a snake has two terms
 - Does this sound familiar?

\[E_{\text{total}} = E_{\text{in}} + E_{\text{ex}} \]

- Internal energy encourages smoothness or any particular shape
- Internal energy incorporates prior knowledge about object boundary allowing to extract boundary even if some image data is missing
- External energy encourages curve onto image structures (e.g. image edges)
Discrete snake formulation

- Use a spline with control points \(v_i = (x_i, y_i) \)
Discrete external energy

- Want to attract the snake to edges

\[E_{ex} = - \sum_i |G_x(x_i, y_i)|^2 + |G_y(x_i, y_i)|^2 \]

\[G_x = \frac{\partial}{\partial x} G_\sigma \otimes I \]

\[G_y = \frac{\partial}{\partial y} G_\sigma \otimes I \]
Discrete internal energy

\[
\frac{dv}{ds} \approx v_{i+1} - v_i
\]

\[
\frac{d^2v}{ds^2} \approx (v_{i+1} - v_i) - (v_i - v_{i-1}) = v_{i+1} - 2v_i + v_{i-1}
\]

\[
E_{in} = \sum_{i=0}^{n-1} \alpha |v_{i+1} - v_i|^2 + \beta |v_{i+1} - 2v_i + v_{i-1}|^2
\]

Elasticity
Stiffness
Simple elastic curve

- For a curve represented as a set of points, a simple elastic energy term is

\[
E_{in} = \alpha \cdot \sum_{i=0}^{n-1} L_i^2 \\
= \alpha \cdot \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2
\]

This encourages the closed curve to shrink to a point (like a very small elastic band)
Synthetic example

1. (1)
2. (2)
3. (3)
4. (4)
Snake energy

\[E_{total}(\nu_0, \ldots, \nu_{n-1}) = -\sum_{i=0}^{n-1} \| G(\nu_i) \|^2 + \alpha \cdot \sum_{i=0}^{n-1} \| \nu_{i+1} - \nu_i \|^2 \]

\[E_{total}(\nu_0, \ldots, \nu_{n-1}) = \sum_{i=0}^{n-1} E_i(\nu_i, \nu_{i+1}) \]

where \[E_i(\nu_i, \nu_{i+1}) = -\| G(\nu_i) \|^2 + \alpha \| \nu_i - \nu_{i+1} \|^2 \]
Relative weighting of terms

- Notice that the strength of the internal elastic component can be controlled by the parameter α
 $$E_{in} = \alpha \cdot \sum_{i=0}^{n-1} L_i^2$$

- Increasing this increases curve stiffness

Large α Medium α Small α
Some variants

Avoid shrinkage: \[E_{in} = \alpha \cdot \sum_{i=0}^{n-1} (L_i - \hat{L}_i)^2 \]

Prefer known shape: \[E_{in} = \alpha \cdot \sum_{i=0}^{n-1} (1) \]
Dynamic programming

First-order interactions

\[E(v_1, v_2, \ldots, v_n) = E_1(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_{n-1}(v_{n-1}, v_n) \]

Energy \(E \) is minimized via Dynamic Programming
Dynamic programming

\[E(v_1, v_2, \ldots, v_n) = E_1(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_{n-1}(v_{n-1}, v_n) \]

Iterate until optimal position for each point is the center of the box, i.e. the snake is optimal in the local search space constrained by boxes.
Dynamic programming

\[E_1(v_1, v_2) + E_2(v_2, v_3) + \ldots + E_{n-1}(v_{n-1}, v_n) \]
Limitations of snakes

- Get stuck in local minimum
- Often miss indentations in objects
- Hard to prevent self-intersections
- Cannot follow topological changes!
Missing indentations

image gradients ∇I
are large only directly on the boundary
Diffusing image gradients

Image gradients diffused via
Gradient Vector Flow (GVF)

Chenyang Xu and Jerry Prince, 98
http://iacl.ece.jhu.edu/projects/gvf/
Continuous view of snakes

- Original papers, and most follow ups, take a continuous view
- A curve can be represented parametrically:

\[\nu(s) = (x(s), y(s)) \quad 0 \leq s \leq 1 \]
Continuous snake energy

\[E_{in}(\nu(s)) = \alpha(s) \left| \frac{d\nu}{ds} \right|^2 + \beta(s) \left| \frac{d^2\nu}{d^2s} \right|^2 \]

Elasticity

\[E_{ex}(\nu(s)) = -\left(| G_x(\nu(s)) |^2 + | G_y(\nu(s)) |^2 \right) \]

\[E_{total} = \int_{0}^{1} E_{in}(\nu(s)) \, ds + \int_{0}^{1} E_{ext}(\nu(s)) \, ds \]
Curve evolution

- Basic idea: curve C evolves over time
 - Replace $C(p) = (x(p),y(p))$ by $C(p,t)$
 - Original curve is $C(p,0)$
 - Need a the partial derivative w.r.t. time

- Issue: curve reparameterization and intrinsic properties of curves
 - There are many different functions $x(s), y(s)$ that give you exactly the same curve!
 - Think of driving same road at different speed
Curve evolution of snakes

- We can simplify our energy function to

 \[E(C) = \int_0^1 \alpha |C_p(p)|^2 + g(C(p)) \, dp. \]

- Calculus of variations says that at a local minimum of the energy we have

 \[\alpha C_{pp}(p) + \nabla g(C(p)) = 0. \]

 - We can minimize this via gradient descent
 - Many ugly issues with this...
Arc length parameterization

- If we replaced p by ϕ, where $\phi(r)=p$, $r\in[c,d]$, first term in energy would become

$$\int_c^d |(C \circ \phi)'(r)|^2 (\phi'(r))^{-1} dr$$

- Second term is even worse!

- Natural parameterization is in terms of arc length (distance along curve)

- $s(p)$ is the distance from the origin to p:

$$s(p) = \int_0^q \sqrt{x_q^2(q) + y_q^2(q)} dq$$
Reparameterization

- We can use s to reparameterize the curve

$$L = \int_{0}^{1} |C_p| \, dp$$