Visual Motion

- Over sequence of images can determine which pixels move where
- Differs from motion in the world
 - Camera motion
 - Pan, tilt, zoom
 - Motion parallax
 - Information about depth from camera motion
 - Scene motion
 - Reveals independent objects and behaviors
 - Un-detectable motion
 - No/low intensity variation
Some Uses of Visual Motion

- Human-machine interaction
 - Animation, gestures, facial expressions
- Surveillance and monitoring
 - Tracking and analyzing behaviors
 - Collision detection and avoidance
- Camera stabilization
 - Remove jitter
- Autonomous navigation
 - Path finding and depth from parallax
- Constructing panoramic mosaics
Motion Analysis in Video

- **Video insertion**
 - Compute motion in one image sequence
 - Use to transform frames of another sequence and superimpose
 - Today used to insert signs and markings into sporting events

- **Panoramic mosaics**
 - Synthesized views from video sequence
Estimating Visual Motion

- Historically two different approaches
 - Direct methods, based on local image derivatives at each pixel
 - Feature based methods, sparse correspondence

- We will focus on direct methods
 - Used most in practice
 - Recover image motion from spatio-temporal variations in brightness
 - Dense estimates but can be sensitive to variations in appearance
Direct Motion Estimation Methods

- Based on the following assumptions
 - Every pixel in image I goes to some location in subsequent image J
 - Overall brightness of images I,J does not change (much)
- Called brightness constancy equation
 \[I(x,y) \approx J(x+u(x,y), y+v(x,y)) \]
Using Brightness Constancy

- Minimization formulation
 - Seek \((u(x,y), v(x,y))\) minimizing error
 \([I(x,y) - J(x+u(x,y),y+v(x,y))]^2\)
 - Not practical to search explicitly!

- Linearization
 - Relate motion to image derivatives
 - Gradient constraint
 - Assuming small \(u,v\) (on order of a pixel)
 - First order term of Taylor series expansion of brightness constancy
Gradient Constraint

- One-dimensional example – linearization
 - Estimate displacement \(d \) using derivative
 - Two functions \(f(x) \) and \(g(x) = f(x-d) \)
 - Taylor series expansion
 \[f(x-d) = f(x) - d f'(x) + E \]
 - Where \(f' \) denotes derivative
 - Now write difference as
 \[f(x)-g(x) = d f'(x) + E \]
 - Neglecting higher order terms
 \[\delta = (f(x)-g(x))/f'(x) \]
 - Note only for small \(d \)
Gradient Constraint (or Optical Flow Constraint)

- Same approach extends naturally to 2D:
 \[I(x,y) \approx J(x+u,y+v), \quad u=u(x,y), \quad v=v(x,y) \]
 - Assume time-varying image intensity well approximated by first order Taylor series:
 \[J(x+u,y+v) \approx I(x,y)+I_x(x,y)\cdot u+I_y(x,y)\cdot v+I_t \]
 - Substituting:
 \[I_x(x,y)\cdot u+I_y(x,y)\cdot v \approx -I_t \]
 - Using gradient notation:
 \[\nabla I \cdot (u,v) \approx -I_t \]
 - Linear constraint on motion \((u,v)\) at each pixel
 - Can only estimate motion in gradient direction
Aperture Problem (Normal Flow)

- Can only measure motion in direction normal to edge (along gradient)
Aperture Problem (Normal Flow)

- Gradient constraint defines line in (u,v) space
 \[\nabla I \cdot (u,v) \approx -I_t \n\]
- Methods based solely on per pixel estimates don’t work well
Combining Local Constraints

- Each pixel defines linear constraint on possible \((u,v)\) displacement
 - For set of pixels with same displacement combine constraints to get estimate
 - For pixels with different displacements, somehow identify that is case
Translational Motion

- Assume single displacement \((u,v)\) for all pixels within some region of image
- Over-constrained system of linear equations \(I_x(x,y) \cdot u + I_y(x,y) \cdot v = -I_t\)
- Find least squares solution
 - In matrix form: \(\min_z \| Dz - t \|

\[
D = \begin{bmatrix}
I_x(x_1,y_1) & I_y(x_1,y_1) \\
\vdots & \vdots \\
I_x(x_n,y_n) & I_y(x_n,y_n)
\end{bmatrix}
\]

and \(t = [I_t(x_1,y_1) \ldots I_t(x_n,y_n)]^T\)
Least Squares Solution

- \(z^* = (D^TD)^{-1} D^Tt \)
 - Method of normal equations, can derive from setting partial derivatives to zero

\[
D^TD = \begin{pmatrix}
\sum I_x^2 & \sum I_x I_y \\
\sum I_x I_y & \sum I_y^2
\end{pmatrix} \quad D^Tt = \begin{pmatrix}
\sum I_x I_t \\
\sum I_y I_t
\end{pmatrix}
\]

- Inverse of 2x2 closed form

\[
A = \begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \quad A^{-1} = 1/(ad-bc) \begin{pmatrix}
d & -b \\
-c & a
\end{pmatrix}
\]

Where \(\text{det}(A) = ad-bc \) not (near) zero
Translational Motion

- Can estimate small translation over local patch around each pixel
 - Fast using box sums
 - Note relation to corner detection
 - Poor estimate if A nearly singular
 - Also poor if patch contains more than one underlying motion

- Better handling of multiple motions
 - Robust statistical techniques

- Handling larger translations
 - Pyramid method
Multiple Motions

- Robust statistical techniques for finding predominant motion in a region
- Consider approach of iteratively reweighted least squares (IRLS)
 - As illustration of robust methods
- Generalize minimization problem to
 \[\min_{z} \| W(Dz - t) \| \]
 - Weight matrix W is diagonal
 - Lessen importance of pixels that don’t match
 - Iterate to find “good” weights
 - Note in unweighted case W is identity matrix
Finding Predominant Motion

- Minimization generalizes in obvious way
 \[z^* = (D^TW^2D)^{-1} D^TW^2t \]
- Determining good weights to use
 - Start by computing least squares solution, \(z^0 \)
 - Iteratively compute better solutions
 - Compute error for each pixel based on previous solution \(z^{k-1} \) and use that to set weight per pixel
 - Depends on initial solution being good enough to allow “bad pixels” to have largest error
 - Have to measure error based on image intensity matches, it’s the only thing we can measure
Updating Weights

To solve for z^k given z^{k-1}

- Create weights $W^k = \text{diag}(w_1^k \ldots w_n^k)$ where

$$w_i^k = \begin{cases} 1 & \text{if } r_{i}^{k-1} \leq c \\ c/r_{i}^{k-1} & \text{otherwise} \end{cases}$$

- Where r_{i}^{k-1} is measure of error at i-th pixel with motion estimate from iteration $k-1$
 - Compare i-th pixel value to matching pixel of other image (using z^{k-1} for correspondence)
 - And c is set based on robust measure of good versus bad data, such as median
 - Common value is $1/\.6745 \ \text{median}(r_{i}^{k-1})$
Weights Example

\[z^{k-1} \]

\[r_i^{k-1}: 0,0,1,0,1,1,6,5,6 \]
\[w_i^k: 1,1,1,1,1,1,.24,.29,.24 \]

\[\text{median} = 1 \]
\[c \approx 1.48 \]
Global Motion Estimation

- Estimate motion vectors that are parameterized over some region
 - Each vector fits some low-order model of how vectors change
- Affine motion model is commonly used
 \[u(x,y) = a_1 + a_2 x + a_3 y \]
 \[v(x,y) = a_4 + a_5 x + a_6 y \]
- Substituting into grad. constr. equation
 \[I_x(a_1 + a_2 x + a_3 y) + I_y(a_4 + a_5 x + a_6 y) \approx -I_t \]
 - Each pixel provides a linear constraint in six unknowns
Affine Transformations

- Consider points \((x,y)\) in plane rather than vectors for the moment
 - Linear transformation and translation
 \[
 x' = a_1 + a_2 x + a_3 y \\
 y' = a_4 + a_5 x + a_6 y
 \]
 - In matrix form \(A(z)=Lz+b\)
 \[
 \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ a_5 & a_6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a_1 \\ a_4 \end{pmatrix}
 \]
 - Maps any triangle to any triangle
 - Defined by three corresponding pairs of points
Why Affine Transformations

- Simple (and often inaccurate) model of projection
 - Point \((x,y,z)\) in space maps to \((x,y)\) in image
 - Orthographic or parallel projection
- Somewhat reasonable model for telephoto lens
- Yields affine transformation of plane for viewing “flat objects”
 - 3D rotation, translation followed by orthographic projection and scaling
Affine Motion Estimation

- Minimization problem become that of estimating the parameters a_1, \ldots, a_6
 - Rather than just two parameters u,v
- Still (over-constrained) linear system but in more unknowns
 - Again use least squares to solve
- Separable into two independent 3 variable problems
 - a_1, a_2, a_3 reflect only u-component of motion
 - a_4, a_5, a_6 reflect only v-component of motion
Affine Motion Equations

- Again compute \((D^TD)^{-1} DT_t\)
 - Or (re)weighted version for IRLS
- Now two 3x3 problems, one for \(I_x\) and one for \(I_y\), as opposed to single 2x2 problem
- Problem for \(I_x\) and \(u\) motion (\(I_y\) analogous)
 - \(T\) remains same, \(D\) changes

\[
D = \begin{pmatrix}
I_{x1} & x_1 & I_{x1} & y_1 & I_{x1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
I_{xn} & x_n & I_{xn} & y_n & I_{xn}
\end{pmatrix}
\]
Multiple (Layered) Motions

- Combining global parametric motion estimation with robust estimation
 - Calculate predominant parameterized motion over entire image (e.g., affine)
 - Corresponds to largest planar surface in scene under orthographic projection
 - If doesn’t occupy majority of pixels robust estimator will probably fail to recover its motion
 - Outlier pixels (low weights in IRLS) are not part of this surface
 - Recursively try estimating their motion
 - If no good estimate, then remain outliers
Other Global Motion Models

- The affine model is simple but not that accurate in some imaging situations
 - For instance “pinhole” rather than “parallel” camera model for closer objects
 - Non-planar surfaces
 - Explicit modeling of motion parallax

- Projective planar case
 \[x' = \frac{h_1 + h_2 x + h_3 y}{h_7 + h_8 x + h_9 y} \]
 \[y' = \frac{h_4 + h_5 x + h_6 y}{h_7 + h_8 x + h_9 y} \]
 and \(u = x' - x, \ v = y' - y \)

- 3D models such as residual planar parallax
Handling Larger Motions

- Methods based on image gradients are restricted to small displacements
- Two different approaches
 - Abandon gradient method and explicitly search over possible translations
 - Computationally expensive to do for every pixel
 - Consider shifts and products of image patch
 - Block motion provides estimates just for certain pixels, used in compression (e.g., MPEG)
 - Pyramid to guarantee small motions
 - At top level small motion
 - At each level small deviation from one above
Coarse to Fine Motion Estimation

- Estimate residual motion at each level of Gaussian pyramid

Original

Pyramid of image I

Pyramid of image J

1/2\(^k\) res

\(I^1, J^1\)

\(I^0, J^0\)
Coarse to Fine Estimation

- Compute M^k, estimate of motion at level k
 - Can be local motion estimate (u^k,v^k)
 - Vector field with motion of patch at each pixel
 - Can be global motion estimate
 - Parametric model (e.g., affine) of dominant motion for entire image
 - Choose max k such that motion about one pixel

- Apply M^k at level $k-1$ and estimate remaining motion at that level, iterate
 - Local estimates: shift I^k by $2(u^k,v^k)$
 - Global estimates: apply inverse transform to J^{k-1}
Global Motion Coarse to Fine

- Compute transformation T_k mapping pixels of I^k to J^k
- Warp image J^{k-1} using T^k
 - Apply inverse of T^k
 - Double resolution of T^k (translations double)
- Compute transformation T^{k-1} mapping pixels of I^k to warped J^{k-1}
 - Estimate of “residual” motion at this level
 - Total estimate of motion at this level is composition of T^{k-1} and resolution doubled T^k
 - In case of translation just add them
Affine Mosaic Example

- Coarse-to-fine affine motion
 - Pan tilt camera sweeping repeatedly over scene
- Moving objects removed from background
 - Outliers in motion estimate, use other scans
SSD

- An alternative to gradient based methods is template matching
 - Treat a rectangle around each pixel as a “template” to find best match in other image
 - Search over possible translations minimizing some error criterion (or maximizing quality)
 - Generally use sum squared difference (SSD)
 \[\sum \sum (I(x,y)-J(x+u,y+v))^2 \]
 - Sometimes compute cross correlation
 - Compute over local neighborhood