CS 664 Lecture 5
Hausdorff and Chamfer Cont.

Prof. Dan Huttenlocher
Fall 2003
Template Clustering

- Cluster templates into tree structures to speed matching
 - Rule out multiple templates simultaneously
 - Coarse-to-fine search where coarse granularity can rule out many templates
 - Several variants: Olson, Gavrila, Stenger

- Applies to variety of DT based matching measures
 - Chamfer, Hausdorff and robust Chamfer

- Use hierarchical clustering techniques (e.g., Edelsbrunner) offline on templates
Example Hierarchical Clusters

Larger pairwise differences higher in tree
DT and Morphological Dilation

- Dilation operation replaces each point of \(P \) with some fixed point set \(Q \)
 \[P \oplus Q = \bigcup_p \bigcup_q p+q \]
- Dilation by a “disc” \(C^d \) of radius \(d \) replaces each point with a disc
 \[x \in P \oplus C^d \iff D_P(x) \leq d \]
Dilate and Correlate Matching

- Fixed degree of “smoothing” of features
 - Dilate binary feature map with specific radius disc rather than all radii as in DT
- \(h_k(A,B) \leq d \iff |A \cap B^d| \geq k \)
 - At least \(k \) points of \(A \) contained in \(B^d \)
- For low dimensional transformations such as x-y-translation best way to compute
 - Dilation and binary correlation are very fast
 - For higher dimensional cases hierarchical search using DT is faster
Dot Product Formulation

- Let A and B^d be (binary) vector representations of A and B
 - E.g. standard scan line order
- Then fractional Hausdorff distance can be expressed as dot product
 - $h_k(A,B) \leq d \iff A \cdot B^d \geq k$
- Note that if B is perturbation of A by d then $A \cdot B$ is arbitrary whereas $A \cdot B^d = A \cdot A$
- Hausdorff matching using linear subspaces
 - Eigenspace, PCA, etc.
Learning and Hausdorff Distance

- Learning linear half spaces
 - Dot product formulation defines linear threshold function
 - Positive if $A \cdot B^d \geq k$, negative otherwise
- PAC – probably approximately correct
 - Learning concepts that with high probability have low error
 - Linear programming and perceptrons can both be used to learn half spaces in PAC sense
- Consider small number of values for d (dilation parameter) and pick best
Illustration of Linear Halfspace

- Possible images define n-dimensional binary space
- Linear function separating positive and negative examples
Perceptron Algorithm

- Examples x_i each with label $y_i \in \{+,-\}$
- Set initial prediction vector v to 0
- For $i=1, \ldots, m$
 - If $\text{sign}(v \cdot x_i) \neq \text{sign}(y_i)$
 - then $v = v + y_i x_i$
- Run repeatedly until no misclassifications on m training examples
 - Or less than some threshold number but then haven’t found linear separator
- Generally need many more negative than positive examples for effective training
Perceptron Algorithm

- Perceptron classifier learns concepts c of form $u \cdot c \geq 0$
 - Our problem of form $u \cdot c \geq 0$
 - Map into one higher dimensional space
 - Unknown $u = (-\kappa \ldots)$
 - Concept $c = (\kappa \ldots)$
 - Note in practice converges most rapidly if κ proportional to length of vector (e.g., \sqrt{r})

- Train perceptron on dilated training data
 - Positive and negative labeled examples

- Recognize by dot product of resulting c
Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000)

All Model Coefs.

Pos. Model Coefs.

Example Model (dilation d=3, picked automatically)
Detection Results

- Train on 80% test on 20% of data
 - No trials yielded any false positives
 - Average 3% missed detections, worst case 5%
Spatial Continuity

- Hausdorff and Chamfer matching do not measure degree of connectivity
 - E.g., edge chains versus isolated points
- Spatially coherent matching approach
 - Separate features into three subsets
 - **Matchable**
 - Near image features
 - **Boundary**
 - Matchable but near un-matchable
 - **Un-matchable**
 - Far from image features
Solving for Transformation

Find T which minimizes error between transformed model and data

$$\epsilon(T) = -\log P(T) = \sum_j \min_i d(T \ast M_i, D_j)$$

For each datum

Where:

- $d(x, y)$ is a distance between points x and y.
- $T \ast x$ applies the transformation to x
 e.g. $T = (\theta, t_x, t_y)$ for 2D

$$T \ast x = \begin{pmatrix}
 x \cos \theta + y \sin \theta + t_x \\
 -x \sin \theta + y \cos \theta + t_y
\end{pmatrix}$$
Easy if Correspondence Known

Hard:
\[\epsilon(T) = \sum_i \min_j d(T \ast M_i, D_j) \]

Easy:
Given correspondences \(j \leftrightarrow \phi(j) \)
Can minimize
\[\sum_j d(T \ast M_{\phi(j)}, D_j) \]
Don’t Know Correspondence
Guess and Try to Improve

- That’s OK, just choose the closest point...
- *Of course* it’s wrong, but it will get us closer
ICP: Iterated Closest Point
Problems with ICP

- **Slow**
 - Can take many iterations
 - Each iteration slow due to search for correspondences
 - Fitzgibbons: improve this by using distance transform

- **No convergence guarantees**
 - Can get stuck in local minima
 - Not much to do about this
 - Can be improved by using robust distance measures (e.g., truncated quadratic)