CS 664 Lecture 4
Flexible Template Matching

Prof. Dan Huttenlocher
Fall 2003
Flexible Template Matching

- Pictorial structures
 - Parts connected by springs and appearance models for each part
 - Used for human bodies, faces
 - Fischler & Elschlager, 1973 – considerable recent work
Formal Definition of Model

- Set of parts $V = \{v_1, \ldots, v_n\}$
- Configuration $L = (l_1, \ldots, l_n)$
 - Specifying locations of the parts
- Appearance parameters $A = (a_1, \ldots, a_n)$
 - Model for each part
- Edge $e_{ij}, (v_i, v_j) \in E$ for connected parts
 - Explicit dependency between part locations l_i, l_j
- Connection parameters $C = \{c_{ij} \mid e_{ij} \in E\}$
 - Spring parameters for each pair of connected parts
Flexible Template Algorithms

- Difficulty depends on structure of graph
 - Which parts are connected (E) and how (C)
- General case exponential time
 - Consider special case in which parts translate with respect to common origin
 - E.g., useful for faces

- Parts $V = \{v_1, \ldots, v_n\}$
- Distinguished central part v_1
- Spring c_{i1} connecting v_i to v_1
- Quadratic cost for spring
Efficient Algorithm for Central Part

- Location $L = (l_1, \ldots, l_n)$ specifies where each part positioned in image
- Best location $\min_L (\sum_i m_i(l_i) + d_i(l_i, l_1))$
 - Part cost $m_i(l_i)$
 - Measures degree of mismatch of appearance a_i when part v_i placed at location l_i
 - Deformation cost $d_i(l_i, l_1)$
 - Spring cost c_{i1} of part v_i measured with respect to central part v_1
 - E.g., quadratic or truncated quadratic function
 - Note deformation cost zero for part v_1 (wrt self)
Central Part Model

- Spring cost c_{ij}: $i=1$, ideal location of l_j wrt l_1
 - Translation $o_j = r_j - r_1$
 - $T_j(x) = x + o_j$

- Spring cost deformation from this ideal
 - $\| l_j - T_j(l_1) \|^2$
Consider Case of 2 Parts

- \(\min_{l_1, l_2} (m_1(l_1) + m_2(l_2) + \|l_2 - T_2(l_1)\|^2) \)
 - Where \(T_2(l_1) \) transforms \(l_1 \) to ideal location with respect to \(l_2 \) (offset)

- \(\min_{l_1} (m_1(l_1) + \min_{l_2} (m_2(l_2) + \|l_2 - T_2(l_1)\|^2)) \)
 - But \(\min_x (f(x) + \|x - y\|^2) \) is a distance transform

- \(\min_{l_1} (m_1(l_1) + D_{m_2}(T_2(l_1))) \)

- Sequential rather than simultaneous min
 - Don’t need to consider each pair of positions for the two parts because a distance
 - Just distance transform the match cost function, \(m \)
Several Parts wrt Reference Part

- \(\min_L (\sum_i (m_i(l_i) + d_i(l_i, l_1))) \)
- \(\min_L (\sum_i m_i(l_i) + \| l_i - T_i(l_1) \|^2) \)
 - Quadratic distance between location of part \(v_i \) and ideal location given location of central part

- \(\min_{l_1} (m_1(l_1) + \sum_{i>1} \min_{l_i} (m_i(l_i) + \| l_i - T_i(l_1) \|^2)) \)
 - i-th term of sum minimizes only over \(l_i \)

- \(\min_{l_1} (m_1(l_1) + \sum_{i>1} D_{mi}(T_i(l_1))) \)
 - Because \(D_f(x) = \min_y (f(y) + \| y-x \|^2) \)
 - Using same D.T. algorithms as for binary images
Application to Face Detection

- Five parts: eyes, tip of nose, sides of mouth
- Each part a local image patch
 - Represented as response to oriented filters
 - 27 filters at 3 scales and 9 orientations
 - Learn coefficients from labeled examples
- Parts translate with respect to central part, tip of nose
Flexible Template Face Detection

- Runs at several frames per second
 - Compute oriented filters at 27 orientations and scales for part cost m_i
 - Distance transform m_i for each part other than central one (nose tip)
 - Find maximum of sum for detected location
More General Flexible Templates

- Efficient computation using distance transforms for any tree-structured model
 - Not limited to central reference part
- Two differences from reference part case
 - Relate positions of parts to one another using tree-structured recursion
 - Solve with Viterbi or forward-backward algorithm
 - Parameterization of distance transform more complex – transformation T_{ij} for each connected pair of parts
General Form of Problem

- Best location can be viewed in terms of probability or cost (negative log prob.)
 - $\max_L p(L|I,\Theta) = \arg\max_L p(I|L,A)p(L|E,C)$
 - $\min_L \sum_V m_j(l_j) + \sum_E d_{ij}(l_i,l_j)$
 - $m_j(l_j)$ – how well part v_j matches image at l_j
 - $d_{ij}(l_i,l_j)$ – how well locations l_i,l_j agree with model (spring connecting parts v_i and v_j)

- Difficulty of maximization/minimization depends to large degree on form of graph
Minimizing Over Tree Structures

- Use dynamic programming to minimize
 \[\sum_{V} m_j(l_j) + \sum_{E} d_{ij}(l_i, l_j) \]

- Can express as function for pairs \(B_j(l_i) \)
 - Cost of best location of \(v_j \) given location \(l_i \) of \(v_i \)

- Recursive formulas in terms of children \(C_j \) of \(v_j \)
 - \(B_j(l_i) = \min_{l_j} \left(m_j(l_j) + d_{ij}(l_i, l_j) + \sum_{C_j} B_c(l_j) \right) \)
 - For leaf node no children, so last term empty
 - For root node no parent, so second term omitted
Efficient Algorithm for Trees

- MAP estimation algorithm
 - Tree structure allows use of Viterbi style dynamic programming
 - $O(ns^2)$ rather than $O(s^n)$ for s locations, n parts
 - Still slow to be useful in practice (s in millions)
 - Couple with distance transform method for finding best pair-wise locations in linear time
 - Resulting $O(ns)$ method

- Similar techniques allow sampling from posterior distribution in $O(ns)$ time
 - Using forward-backward algorithm
O(ns) Algorithm for MAP Estimate

- Express $B_j(l_i)$ in recursive minimization formulas as a DT $D_f(T_{ij}(l_i))$
 - Cost function
 - $f(y) = m_j(T_{ji}^{-1}(y)) + \sum_{c_j} B_c(T_{ji}^{-1}(y))$
 - T_{ij} maps locations to space where difference between l_i and l_j is a squared distance
 - Distance zero at ideal relative locations

- Yields n recursive equations
 - Each can be computed in $O(sD)$ time
 - D is number of dimensions to parameter space but is fixed (in our case D is 2 to 4)
Example: Recognizing People
Variety of Poses
Variety of Poses
Samples From Posterior
Model of Specific Person
Bayesian Formulation of Learning

- Given example images I¹, ..., Iᵐ with configurations L¹, ..., Lᵐ
 - Supervised or labeled learning problem
- Obtain estimates for model Θ=(A,E,C)
- Maximum likelihood (ML) estimate is
 - \(\text{argmax}_\Theta p(I¹, ..., Iᵐ, L¹, ..., Lᵐ | \Theta) \)
 - \(\text{argmax}_\Theta \prod_k p(I^k, L^k | \Theta) \)
 - Independent examples
 - \(\text{argmax}_\Theta \prod_k p(I^k | L^k, A) \prod_k p(L^k | E, C) \)
 - Independent appearance and dependencies
Efficiently Learning Tree Models

- Estimating appearance $p(I^k|L^k,A)$
 - ML estimation for particular type of part
 - E.g., for constant color patch use Gaussian model, computing mean color and covariance

- Estimating dependencies $p(L^k|E,C)$
 - Estimate C for pairwise locations, $p(l^k_i,l^k_j|c_{ij})$
 - E.g., for translation compute mean offset between parts and variation in offset
 - Best tree using minimum spanning tree (MST) algorithm
 - Pairs with “smallest relative spatial variation”
Example: Generic Person Model

- Each part represented as rectangle
 - Fixed width, varying length
 - Learn average and variation
 - Connections approximate revolute joints
 - Joint location, relative position, orientation, foreshortening
 - Estimate average and variation

- Learned model (used above)
 - All parameters learned
 - Including “joint locations”
 - Shown at ideal configuration