CS 664 Slides #11
Image Segmentation

Prof. Dan Huttenlocher
Fall 2003
Image Segmentation

- Find regions of image that are “coherent”
- “Dual” of edge detection
 - Regions vs. boundaries
- Related to clustering problems
 - Early work in image processing and clustering
- Many approaches
 - Graph-based
 - Cuts, spanning trees, MRF methods
 - Feature space clustering
 - Mean shift
A Motivating Example

- Image segmentation plays a powerful role in human visual perception
 - Independent of particular objects or recognition

This image has three perceptually distinct regions
Graph Based Formulation

- $G=(V,E)$ with vertices corresponding to pixels and edges connecting neighboring pixels
- Weight of edge is magnitude of intensity difference between connected pixels
- A segmentation, S, is a partition of V such that each $C \in S$ is connected

4-connected or 8-connected
Important Characteristics

- **Efficiency**
 - Run in time essentially linear in the number of image pixels
 - With low constant factors
 - E.g., compared to edge detection

- **Understandable output**
 - Way to describe what algorithm does
 - E.g., Canny edge operator and step edge plus noise

- **Not purely local**
 - Perceptually important
Motivating Example

- Purely local criteria are inadequate
 - Difference along border between A and B is less than differences within C

- Criteria based on piecewise constant regions are inadequate (e.g., Potts MRF)
 - Will arbitrarily split A into subparts
MST Based Approaches

- **Graph-based representation**
 - Nodes corresponding to pixels, edge weights are intensity difference between connected pixels

- **Compute minimum spanning tree (MST)**
 - Cheapest way to connect all pixels into single component or “region”

- **Selection criterion**
 - Remove certain MST edges to form components
 - Fixed threshold
 - Threshold based on neighborhood
 - How to find neighborhood
Component Measure

- Instead of constructing MST based on just the edge weights
 - Consider properties of two components being merged when adding an edge

- Recall Kruskal’s MST algorithm adds edges from lowest to highest weight
 - Only when connect distinct components

- Apply criterion based on components to further filter added edges
 - Form of criterion limited by considering edges weight ordered
Measuring Component Difference

- Let \textit{internal difference} of a component be maximum edge weight in its MST
 \[
 \text{Int}(C) = \max_{e \in \text{MST}(C,E)} w(e)
 \]
 - Smallest weight such that all pixels of \(C\) are connected by edges of at most that weight

- Let \textit{difference} between two components be minimum edge weight connecting them
 \[
 \text{Dif}(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2} w((v_i, v_j))
 \]
 - Note: infinite if there is no such edge
Region Comparison Function

- Two components judged to be distinct when $Dif(C_1, C_2)$ large relative to $Int(C_1)$ or $Int(C_2)$
 - Require that it be *sufficiently* larger
 - Controlled by (non-negative) threshold function τ

- Region comparison function $g(C_1, C_2)$ is true when regions should be distinct, i.e., when
 \[Dif(C_1, C_2) > MInt(C_1, C_2) \]
 where $MInt(C_1, C_2)$
 \[= \min(\text{Int}(C_1) + \tau(C_1), \text{Int}(C_2) + \tau(C_2)) \]
About the Threshold Function τ

- Intuitively $Int(C)$ estimates local differences over component
 - Small components give underestimate of local difference – neighboring pixels tend to be similar
 - Thus τ should be large in this case

- Use a function inversely proportional to component size $\tau(C) = k / |C|$
 - k is a parameter of the method that captures “scale of observation”
 - Larger k means prefer larger components
 - Other functions possible, e.g., based on shape
The Algorithm

0. Sort edges of E into $(e_1, ..., e_n)$, in order of non-decreasing edge weight

1. Initialize S with one component per pixel

2. For each e_q in $(e_1, ..., e_n)$ do step 3

3. If weight of e_q small relative to internal difference of components it connects then merge components, otherwise do nothing

I.e., if $w(e_q) \leq MInt(C_i, C_j)$, where $C_i, C_j \in S$ are distinct components connected by e_q, then update S by merging C_i and C_j
Regions Found by the Algorithm

- Three main regions plus a few small ones
- Why the algorithm stops growing these
 - Weight of edges between A and B large wrt max weight MST edges of A and of B
 - Weight of edges between B and C large wrt max weight MST edge of B (but not of C)
Criteria for a Good Segmentation

- Some predicate for comparing two regions
 - Intuitively, evaluates whether there is evidence for a boundary between two regions

- A segmentation is *too fine* when predicate says no evidence for a boundary
 - Some pair of neighboring regions where predicate false

- A segmentation is *too coarse* when there is some refinement that is not too fine
 - A *refinement* is obtained by splitting one or more regions of a segmentation
Good Segmentations and the Example

- Splitting A, B or C would be too fine

- Not splitting A from B or B from C would be too coarse
Other Algorithms and the Criteria

- Piecewise constant regions (or compact clusters in a color-based feature space)
 - Too fine: arbitrarily split ramp in A into pieces
- Breaking high cost edges in the MST of a graph corresponding to the image
 - Both: merge A with B or split C into multiple pieces
Properties of the Algorithm

- It is fast, $O(n \log n)$ for sorting in step 0 and $O(n\alpha(n))$ for the remaining steps
 - Using union-find with path compression to represent the partition, S

- It produces good segmentations
 - Neither too coarse nor too fine according to the above definitions
 - Despite being a greedy algorithm

- It yields the same results regardless of the order that equal-weight edges are considered
 - Proof a bit involved, won’t discuss here
Components “Freeze”

- When two components do not merge, one will be a component of the final segmentation
 - A merge decision is made for an edge e_q and the two components that it connects C_i, C_j
 - Say the merge does not occur because $w(e_q) > \text{Int}(C_i) + \tau(C_i)$
 - Then any subsequent merge involving C_i will also not occur, because edges are considered in non-decreasing weight order
 - Analogous for C_j, so when a merge fails one or both of the components involved “freeze”
Segmentation Not Too Fine

- Follows readily from fact that components “freeze”
 - An edge between two components in final segmentation implies the algorithm decided not to merge when considering this edge
 - Component that caused this decision is frozen, so appears in the final segmentation
- Thus the decision that was true when the edge was considered remains true for the final segmentation
Segmentation Not Too Coarse

- Means any proper refinement is too fine
- Suppose was a proper refinement, T, of the final segmentation, S, that is not too fine
 - Consider the minimum weight edge, e, that is between two components A,B of T but is within a single component C of S
Sketch Continued

- All edges in MST of either A or B have weights smaller than $w(e)$, say it is A

 - Definition of not too fine, and predicate

- Thus algorithm creates A before considering e

 - Because all edges on boundary of A, but internal to C, have weight larger than $w(e)$

- Since T not too fine, the decision criterion implies the algorithm would freeze A when considering e
Closely Related Problems Hard

- What appears to be a slight change
 - Make Dif be quantile instead of min
 $$\min_{v_i \in C_1, v_j \in C_2} w((v_i, v_j))$$
 - Desirable for addressing “cheap path” problem of merging based on one low cost edge

- Makes problem NP hard
 - Reduction from min ratio cut
 - Ratio of “capacity” to “demand” between nodes

- Other methods that we will see are also NP hard and approximated in various ways
Some Implementation Issues

- Smooth images slightly before processing
 - Remove high variation due to digitization artifacts
- Sorting is dominant time in processing
 - For known edge distribution can in principle do better by binning
- Treat color images as three separate images
 - Components of segmentation are “intersection” of components from each of the three color planes
 - Motivation: significant change in any color channel should result in a region boundary
Some Example Segmentations

k=300
320 components larger than 10

k=200
323 components larger than 10
Some Shortcomings

- Smoothing can introduce problems
 - “Extra regions” at boundaries
 - Creates “ramps” between regions, thus merge
Simple Object Examples
Monochrome Example

- Components locally connected (grid graph)
 - Sometimes not desirable
Clustering: Non-Local Components

- Points in d-dimensional space
 - Vertex for each point, edge weights based on distance in this space
- Intuitively, Int measures “density” of clusters
 - Smallest dilation radius such that all points in the cluster are connected
 - When clusters separated by nearly same distance as their “densities” then segmentation is too fine
- For efficiency use a graph with $O(|V|)$ edges
 - Use Mount’s approximate nearest neighbor algorithm to find nearest neighbors
Clustering Gaussian Point Data

Graph connecting four nearest neighbors to each vertex

\[k = 1 \]

Note: Gaussian not constant density

3 largest clusters, 75% classified

5 largest clusters, 95% classified
Clustering for Image Segmentation

- Treat each pixel as a point in a feature space
 - More than just local intensity or color, incorporate spatial, texture, motion or other differences
- Now regions of segmentation need not be connected in image
- Practical issue, relatively expensive to find nearest neighbors for graph
 - Can use neighbors in some fixed distance, but restricts regions that can be found
 - In examples here use 4 nearest neighbors
Example Clustering of Image Data

- Segmentation using difference in R,G,B values and in position
 - Distance of 5 pixels same as 1 intensity unit

Non-Local Component
About Clustering for Image Data

- Meaningful regions in image are not necessarily compact in feature space
- Cheap path in feature space not always apparent in image
Additional Example

- High variability in illuminated tower pixels
Beyond Grid Graphs

- Image segmentation methods using affinity (or cost) matrices
 - For each pair of vertices \(v_i, v_j \) an associated weight \(w_{ij} \)
 - Affinity if larger when vertices more related
 - Cost if larger when vertices less related
 - Matrix \(W = [w_{ij}] \) of affinities or costs
 - \(W \) is large, avoid constructing explicitly
 - For images affinities tend to be near zero except for pixels that are nearby
 - E.g., decrease exponentially with distance
 - \(W \) is sparse
Cut Based Techniques

- For costs, natural to consider minimum cost cuts
 - Removing edges with smallest total cost, that cut graph in two parts
 - Graph only has non-infinite-weight edges
- For segmentation, recursively cut resulting components
 - Question of when to stop
- Problem is that cuts tend to split off small components
 - Few edges
Normalized Cuts

- A number of normalization criteria have been proposed
- One that is commonly used

\[Ncut(A,B) = \frac{cut(A,B)}{assoc(A,V)} + \frac{cut(A,B)}{assoc(B,V)} \]

- Where \(cut(A,B) \) is standard definition

\[\sum_{i \in A, j \in B} w_{ij} \]

- And \(assoc(A,V) = \sum_j \sum_{i \in A} w_{ij} \)
Computing Normalized Cuts

- Has been shown this is equivalent to an integer programming problem, minimize

\[
\frac{y^T (D-W)y}{y^T D y}
\]

- Subject to the constraint that \(y_i \in \{1, b\} \) and \(y^T D 1 = 0 \)
 - Where \(1 \) vector of all 1’s

- \(W \) is the affinity matrix

- \(D \) is the degree matrix (diagonal)

\[
D(i,i) = \sum_j w_{ij}
\]
Approximating Normalized Cuts

- Integer programming problem NP hard
 - Instead simply solve continuous (real-valued) version
 - This corresponds to finding second smallest eigenvector of
 \[(D-W)y_i = \lambda_i D y_i\]

- Widely used method
 - Works well in practice
 - Large eigenvector problem, but sparse matrices
 - Often resolution reduce images, e.g, 100x100
 - But no longer clearly related to cut problem
Normalized Cut Examples
Another Look at the Problem

- Consider eigen analysis of affinity matrix
 \[W = \begin{bmatrix} w_{ij} \end{bmatrix} \]
 - Note \(W \) is symmetric; for images \(w_{ij} = w_{ji} \)
 - \(W \) also essentially block diagonal
 - With suitable rearrangement of rows/cols so that vertices with higher affinity have nearer indices
 - Entries far from diagonal are small (though not quite zero)

- Eigenvectors of \(W \)
 - Recall for real, symmetric matrix forms an orthogonal basis
 - Axes of decreasing “importance”
Structure of W

- Eigenvectors of block diagonal matrix consist of eigenvectors of the blocks
 - Padded with zeroes
- Note rearrangement so that clusters lie near diagonal only conceptual
 - Eigenvectors of permuted matrix are permutation of original eigenvectors
- Can think of eigenvectors as being associated with high affinity “clusters”
 - Eigenvectors with large eigenvalues
 - Approximately the case
Structure of W

- Consider case of point set where affinities
 \[w_{ij} = \exp\left(-\frac{(y_i - y_j)^2}{\sigma^2}\right) \]
- With two clusters
 - Points indexed to respect clusters for clarity
- Block diagonal form of W
 - Within cluster affinities A, B for clusters
 - Between cluster affinity C

\[
W = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}
\]
First Eigenvector of W

- Recall, vectors x_i satisfying $Wx_i = \lambda_i x_i$
- Consider ordered by eigenvalues λ_i
 - First eigenvector x_1 has largest eigenvalue λ_1
- Elements of first eigenvector serve as “index vector”
 - Selecting elements of highest affinity cluster

Points in plane

W

Elements of x_1
Clustering

- First eigenvector of W has been suggested as clustering or segmentation criterion
 - For selecting most significant segment
 - Then recursively segment remainder

- Problematic when similar affinity clusters (regions)
Understanding Normalized Cuts

- Intractable discrete graph problem used to motivate continuous (real valued) problem
 - Find second smallest “generalized eigenvector”
 \[(D-W)x_i = \lambda_i D x_i\]
 - Where D is (diagonal) degree matrix \(d_{ii} = \sum_j w_{ij}\)

- Can be viewed in terms of first two eigenvectors of normalized affinity matrix
 - Let \(N = D^{-1/2} W D^{-1/2}\)
 - Note \(n_{ij} = w_{ij} / (\sqrt{d_{ii}} \sqrt{d_{jj}})\)
 - Affinity normalized by degree of the two nodes
Normalized Affinities

- Can be shown that
 - If x is an eigenvector of N with eigenvalue λ
 then $D^{-1/2}x$ is a generalized eigenvector of W with eigenvalue $1-\lambda$
 - The vector $D^{-1/2}1$ is an eigenvector of N with eigenvalue 1

- It follows that
 - Second smallest generalized eigenvector of W is ratio of first two eigenvectors of N
 - So ncut uses normalized affinity matrix N and first two eigenvectors rather than affinity matrix W and first eigenvector
Contrasting W and N

- Three simple point clustering examples
 - W, first eigenvector of W, ratio of first two eigenvectors of N (generalized eigenvector of W)
Image Segmentation

- Considering W and N for segmentation
 - Affinity a negative exponential based on distance in x,y,b space
- Eigenvectors of N more correlated with regions
Using More Eigenvectors

- Based on k largest eigenvectors
 - Construct matrix Q such that (ideally) $q_{ij}=1$ if i and j in same cluster, 0 otherwise

- Let V be matrix whose columns are first k eigenvectors of W

- Normalize rows of V to have unit Euclidean norm
 - Ideally each node (row) in one cluster (col)

- Let $Q=VV^T$
 - Each entry product of two unit vectors
Normalization and k Eigenvectors

- Normalized affinities help correct for variations in overall degree of affinity
 - So compute Q for N instead of W
- Contrasting Q with ratio of first two eigenvectors of N (ncut criterion)
 - More clearly selects most significant region
 - Using $k=6$ eigenvectors
 - Row of Q matrix vs. ratio of eigenvectors of $N
Spectral Methods

- Eigenvectors of affinity and normalized affinity matrices
- Widely used outside computer vision for graph-based clustering
 - Link structure of web pages, citation structure of scientific papers
 - Often directed rather than undirected graphs
Mean Shift

- Used both for segmentation and for edge preserving filtering
- Operates on collection of points $X = \{x_1, \ldots, x_n\}$ in \mathbb{R}^d
- Replace each point with value derived from mean shift procedure
 - Searches for a local density maximum by repeatedly shifting a d-dimensional hypersphere of fixed radius h
 - Differs from most hyper-sphere based clustering in that no fixed number of clusters
Mean Shift Procedure

- For given point \(x \in X \) let \(y_1, \ldots, y_T \) denote successive locations of that point

\[
y_1 = x
\]

\[
y_{k+1} = \frac{1}{|S(y_k)|} \sum_{x \in S(y_k)} x
\]

- Where \(S(y_k) \) is the subset of \(X \) contained in a hyper-sphere of radius \(h \) centered at \(y_k \)
 - The radius \(h \) is a fixed parameter of the method

- For a point set \(X \), the mean shift procedure is applied separately to all the points
Illustration of Mean Shift

- Path of successive values of y_k for given starting point x

- Can be shown that converges to local density maximum
Mean Shift Image Filtering

- Map each image pixel to point in u, v, b space
 \[x_i = (u_i, v_i, b_i / \sigma) \]
 - Analogous for color images, with three intensity values instead of one
 - Scale factor \(\sigma \) normalizes intensity vs. spatial dimensions

- Perform mean shift for each point
 - Let \(Y_i = (U_i, V_i, B_i) \) denote mean shifted value

- Assign result \(z_i = (u_i, v_i, B_i) \)
 - Original spatial coords, mean shifted intensity
Mean Shift Example
Edge Preserving Filtering

- Mean shift tends to preserve edges
- Edges are where intensity is changing rapidly
- Rapid changes in intensity will result in lower density regions in joint spatial-intensity space
- Mean shift finds local density maxima
Mean Shift Clustering

- Run mean shift procedure for each point
- Cluster resulting convergence points that closer than some small constant
- Assign each point label of its cluster
- Analogous to filtering, but with added step of merging cluster that are nearby in the joint spatial-intensity domain
About Mean Shift

- Convergence to local density maximum
 - Where “local” determined by sphere radius
- Consider simple point set

- Over wide range of sphere radii end up with two clusters
 - Relationship to MST