Fast Object Detection

- For example finding faces at video rates
Dynamic Programming (DP)

- General algorithmic technique
 - Not specific algorithm
 - Analogous to “divide and conquer” – bottom up
- Methods that cache solutions to sub-problems rather than re-computing them
 - E.g., Fibonacci, substring matching
- Applies to problems that can be decomposed into sequence of stages
 - Each stage expressed in terms of results of fixed number of previous stages
Simple DP Example: Box Sum

- Sum n-vector over sliding k-window
 - \(W_k[x] = f[x] + \ldots + f[x+k] \)
 - Note: often k odd, sum between \(x \pm (k-1)/2 \)

 ![Diagram of sliding window]

- Explicit summation \(O(k*n) \) additions
- Recurrence yields \(O(n+k) \) time method
 - \(W_k[x] = W_k[x-1] + f[x+k] - f[x-1] \)
 - Each element of sum differs from previous by just two values
Box Sums in d Dimensions

- One pass along each dimension
 - Sum intermediate result from previous pass
 - 2D case: horizontal then vertical (or vice versa)
 - m by n image, $O(mn+wh)$ time vs. $O(mnwh)$
 - E.g., 10 by 10 summation window, 100x faster
1d Integral Images

- Fast summations over different sized regions (non spatially uniform)
- Cumulative sum
 - $S[x] = f[0] + \ldots + f[x]$
- DP recurrence O(n) time
 - $S[x] = S[x-1] + f[x]$
- Sum over window of $f[x]$ independent of size k
 - $W_k[x] = S[x+k-1] - S[k-1]$

```
3 3 3 2 2 2 1 1 1 1 2
3 6 9 11 13 15 16 17 18 20
```
n-d Integral Images

- Analogous for higher dimensions, 2D:
 - $S[x,y] = f[0,0] + ... + f[0,y] + ...$
 - $f[x,0] + ... + f[x,y]$

- Separate recurrence per dimension
 - $C[x,y] = C[x,y-1] + f[x,y]$ (column sum)
 - $S[x,y] = S[x-1,y] + C[x,y]$ (total sum)
 - Or alternatively row sum then total sum
Fast Region Sums With II

- Sum over a rectangle, constant time
 - \(S[b_r] + S[t_l-(1,1)] - S[b_l-(1,0)] - S[t_r-(0,1)] \)

- Sum over arbitrary region, linear time
 - Running time proportional to length of boundary not area
Fast Detection With II

- Features formed from combinations of sums over rectangles
 - For example positive and negative regions
 - Running time independent of rectangle size
- Viola and Jones use for face detection at approximately video rates
Fast Detection With II

- Also useful for arbitrary shaped regions
 - Decompose into rectangles
 - With no holes in worst case this is number of scan lines (not too bad with holes either)
 - Proportional to boundary length rather than area
 - Construct chain-code representation of boundary and sum values
 - Positive for downward links and negative for upward (reverse for holes)
 - Note relation to work of Jermyn and Ishikawa on boundary integrals