Consensus

Fischer, Lynch and Paterson ’85
Lamport ’01

Presented by K. Vikram
Cornell University
To me, consensus seems to be the process of abandoning all beliefs, principles, values and policies. So it is something in which no one believes and to which no one objects.

Thatcher, Margaret

1925 British Stateswoman Prime Minister (1979-90)
Qui tacet consentire videtur
(He that is silent is thought to consent)
Let’s Agree

• Core of many distributed algorithms
 - transaction commit, group membership
• Unreliability poses challenge
 - process crash, network partitioning, garbled messages, Byzantine
• Asynchrony
 - unpredictable delays
More Motivation

• With decentralization and replication, we need to coordinate nodes
 - data consistency
 - update propagation
 - mutual exclusion
 - consistent global states
 - group membership, communication
 - event ordering
Non-blocking Commit

- To install or not to install
- Each process votes a YES or a NO
- COMMIT if all votes are YES
- ABORT otherwise
Non-blocking Commit

• Properties:
• Termination
 - Every good process eventually decides
• Agreement
 - No two processes decide differently
• Obligation
 - decision value is either COMMIT or ABORT
 - COMMIT ⇒ all processes voted YES
 - all processes vote YES and none are bad ⇒ COMMIT
Surprisingly

A completely *asynchronous* protocol for consensus

cannot tolerate even a single unannounced *process death*

- forget Byzantine failures
- reliable messages
The Consensus Problem

- Each process has Initial Value in \{0,1\}
- Each non-faulty process decides on a value
- All non-faulty processes choose the same value
- The decision is eventually made
- Non-triviality
System Model

- Processes modeled as automata*
- Communicate through messages
- Receive, process and send
- Atomic Broadcast available
Formalize Consensus

• Asynchronous system of N processes
• Process p has x_p and $y_p \in \{b,0,1\}$
• Internal State
 - x_p, y_p, internal storage, pc
• Initial State
• p has a transition function
• Message: (p,m)
• Message System
The Message System

- send(p,m)
- receive(p)
- Non-deterministic receive
- All messages are eventually received
- Configuration, Initial Configuration
- Step, Event, Schedule, Run
- Commutativity
A Quick Lemma

If σ_1 and σ_2 are disjoint
Partially Correct Protocol

- **Decision Value**
- \(\Rightarrow \) Accessible configurations have one decision value
- \(\Rightarrow \forall v \in \{0,1\} \exists C : C \text{ has decision value } v \)
- **Nonfaulty Process**
- **Admissible Run**
- **Deciding Run**
Totally Correct Protocol

• In spite of one fault
• Partially Correct
• Every admissible run is a deciding run
• Some admissible run is not deciding
The Intuition

• Show possibility of protocol being indecisive forever
• Show
 - P could be indecisive initially
 - P can always avoid entering a decision state
Some more definitions

• V is the set of decision values of reachable configurations

• Valency of a configuration
 - Univalent if $|V| = 1$
 - Bivalent if $|V| = 2$
 - $V \neq \emptyset$
Initial Bivalent Configuration

- Lemma: P has a bivalent initial configuration
- P has 0-valent + 1-valent initial configurations
- Consider *adjacent* initial configs
- Consider an admissible deciding run that doesn’t involve the differing process p
- A bivalent initial config is inevitable
Stay Bivalent

• C is a bivalent configuration of P
• Let $e = (p,m)$ be applicable to C
• C: set of configs reachable from C without applying e
• $D = e(C) =$
 \[\{ e(E) \mid E \in C \text{ and } e \text{ is applicable to } E \} \]
• D contains a bivalent configuration
Proof (reductio ad absurdum)

- e is applicable to every $E \in C$
- Assume for contradiction
 - $\forall D \in D$, D is univalent
- Consider E_0, E_1 reachable from C (existence?)
- If $E_i \in C$, let $F_i = e(E_i) \in D$
- else E_i is reachable from some $F_i \in D$
bivalent

\[C \]

\[D \]

\[e \]
Proof (continued)

- Either $E_i \rightarrow F_i$ or $F_i \rightarrow E_i$
- F_i is i-valent
- \mathcal{D} contains both 0-valent and 1-valent configurations
Proof (continued)

• Neighbor configurations
 - reachable in a single step
• C_0 and C_1 are neighbors
Proof (continued)

\(e = (p,m) \)
\(e' = (p',m') \)

If \(p' \neq p \)
• If \(p' = p \)
• Consider any finite deciding run from \(C_0 \) where \(p \) takes no steps
• Suppose \(\sigma \) is the schedule, \(A = \sigma(C_0) \)
• \(\sigma \) applicable to \(D_i \) (Quick Lemma)
• \(A \rightarrow E_0, A \rightarrow E_1 \)
• \(\Rightarrow A \) is bivalent \(\Rightarrow \Leftarrow \)
Proof (continued)
How to avoid deciding...

• Given these lemmas, we show how to construct an \textit{admissible nondeciding run}

• Ensure \textit{admissibility} via
 - a queue of processes
 - messages in buffer ordered by sent time

• The first process receives its earliest message
How to avoid deciding...

• Ensure nondecision as follows:
• Begin execution at C_0, a bivalent configuration
• At any bivalent configuration C
 - if p heads the process queue
 - m is p’s earliest message in the buffer
 - $e = (p,m)$
• \exists bivalent C' reachable from C, where e is the last event applied
All hope is not lost...

- Consensus possible
 - if no process dies during protocol execution
 - majority are nonfaulty
- Each process broadcasts its number
- Listens for messages from ⌈(N+1)/2⌉ - 1
- Create G
- Create G^+ (transitive closure of G)
- Compute initial clique of G^+
Conclusion

- Cannot distinguish among
 - Crashed Process
 - Very Slow Process
 - Slow Communication
- Problem of modeling
- Relax restrictions
 - Asynchrony
 - Probabilistic guarantees
Paxos - a case study

• Safety requirements for consensus
 - Only a proposed value can be chosen
 - Only a single value is chosen
 - A process learns that the value is chosen only after it has been chosen

• Eventually (Liveness)
 - A proposed value is chosen
 - If chosen, a process learns its value
The Setup

• Three Roles
 - Proposer
 - Acceptor
 - Learner

• Asynchronous, non-Byzantine model
 - Agents may delay, fail or restart
 - Messages can be delayed, duplicated or lost but not corrupted
Choosing a Value

• An acceptor must choose the first proposal it receives
• A value is chosen when majority acceptors accept it
Choosing a Value

- Acceptors accept multiple proposals, distinguishing them by a proposal number.
- A value is chosen when a single proposal with that value is accepted by majority.
Choosing a Value

• Allow multiple proposals to be chosen, if they have the same value

• **If a proposal with value** v **is chosen, every higher-numbered proposal chosen has value** v

• … **accepted by any acceptor** …

• … **issued by any proposer** …
Choosing a Value

• Proposers maintain the invariant:
• For any \(v \) and \(n \), if a proposal with \(v \) and \(n \) is issued, \(\exists \) set \(S \) of majority acceptors such that either
 - no acceptor in \(S \) accepted any proposal \(\prec n \)
 - \(v \) is the value of the highest-numbered proposal \(\prec n \) accepted by \(S \)
Proposer’s Job

• Choose a proposal number n and send a *prepare* request to a set of majority acceptors asking for:
 - accepted proposal with highest number $< n$
 - promise not to accept proposals $< n$

• Depending on the response, it sends an accept request with a self-chosen value, or the value of the highest proposal

• Can abort anytime, without reusing n
Acceptor’s Job

• Receive prepare or accept requests
• A response is not required for safety
• A response is allowed
 – always for a prepare request
 – for an accept request, without violating an earlier promise
Progress in Paxos

• Two proposers can keep making prepare requests and getting each other’s accept requests ignored
• Solution: use a distinguished proposer
• Liveness still not guaranteed
Conclusions

• Simple mechanism
• Processes allowed to restart
• No liveness guarantee
Finally

• Comments/Criticisms
• Questions?
• Thank You!