Interprocedural Dataflow Analysis
Propagating information across procedure boundaries is useful.

- Optimize caller using information about callee

 \[
 x := 2 \\
 \text{CALL } f(x) \text{ //call by reference} \\
 \ldots x \ldots \text{//is } x \text{ equal to 2 here?? Need to look at } f
 \]

- Optimize callee using information about callers

 \[
 \ldots \quad \text{PROCEDURE } f(a, b) \\
 \text{CALL } f(x, 5) \quad \ldots \ldots \\
 \ldots
 \]

 - We might generate specialized code for \(f \) in which \(b \) is 5.
 - We might \textit{clone} \(f \) and specialize clone.
 - We might inline \(f \).

Where do such opportunities arise? (i) calling library code (ii) object-oriented programs.
Facts about interprocedural dataflow analysis

- Significantly harder asymptotically and to implement than intraprocedural dataflow analysis
 - Intraprocedural analysis: unknowns are lattice values.
 - Interprocedural analysis: unknowns are functions on lattice values.
 - Aliasing: different program names for same location
- Strategies for dealing with complexity:
 - invent special-purpose algorithms that work for important special cases (eg, if the lattice is finite or of bounded height)
 - use general-purpose techniques that compute approximate but conservative solutions
Game plan for inter-procedural analysis lectures:

- **Start with call-by-value language**
 Key problem: solving dataflow function equations
- **Call-by-value + global variables**
 Some problems have structure we can exploit to speed up analysis.
- **Call-by-reference language**
 Additional problem: **aliasing**
Let us begin with simple program model in which there is no aliasing

```plaintext
MAIN()
    var p,q;
    p = read();
    q = f(p,3);
...
PROCEDURE f(x,y)
    var z,a;
    if (x > 0) z = x;
    a = y;
    ...f(y,z)...
```

- no higher-order procedures
- no data structures
- no global variables
- call-by-value
- assignments in procedure modify locals and parameters
- recursion is allowed

Check: no aliasing
Key data structure: Call (multi)graph

- **Structure:**
 Nodes: one for each procedure
 Edges: from node f to node g if procedure f may invoke procedure g
- **Algorithm:** Building call graph is trivial if there are no higher-order procedures.
- **Use:** Call graph plays a role sort-of like that of control flow graph in intraprocedural analysis, but not quite....
Context-insensitive analysis

One obvious approach: reduce interproc case to intraproc case

forward dataflow problem:
- merge information from all call sites of procedure at START
- copy dataflow information coming out of END to all return sites

PROCEDURE f (..)
..... id(2)
......id(3).....

PROCEDURE id(n)
return n;

Problem: information propagates along impossible interprocedural paths such as blue edge into id and red edge out of id
This loses precision: in our example, we would not detect that id(2) is 2!
However, this reduction of inter-procedural analysis to the intra-procedural case is safe.
It is called context-insensitive analysis.
Context-sensitive analysis

Do not mix dataflow information from different call-sites of a procedure

One implementation of context-sensitive analysis:
- model each program procedure by a function on dataflow values
- to analyze dataflow effect of a call to procedure \(g \), dataflow analyzer
 invokes the associated function, passing it some dataflow values
 and getting dataflow values back
- solves problem of avoiding dataflow mixing

\[
\text{PROCEDURE } f(\ldots) \quad \text{PROCEDURE } \text{id}(n) \\
\text{..... id}(2) \quad \rightarrow \quad \text{idc}(2).... \\
\text{..... id}(3)..... \\
\text{PROCEDURE } \text{id}(n) \quad \rightarrow \quad \text{idc}(n) \\
\text{return } n; \quad \rightarrow \quad \text{return } n;
\]

Dataflow functions for constant propagation

Another implementation: build the composite graph as in context-insensitive analysis
but propagate dataflow values together with a "tag" that identifies call sequence
that generated that value (Sharir and Pnueli)
Main problem with context-sensitive analysis: termination

- Intuitively, we are doing something similar to a symbolic execution of program.
- Analysis must terminate even if program execution does not terminate!
- Difficulty with recursive procedures: analysis usually requires symbolic execution of both sides of conditionals, so how do we ensure termination? Here’s an example where program terminates but analysis would not.
procedure main() {
 var p;
 p = read();
 return f(3,p);
}

procedure f(n,p) {
 if (n > p)
 then return f(n-1,p);
 else return 1;
}

function mainc() {
 p = bottom;
 p = T;
 return fc(3,p);
}

function fc(n,p) {
 t1 = t2 = t3 = bottom;
 if (n > p)
 then t1 = fc(n-1,p);
 else t2 = 1
 t3 = join(t1,t2);
 return t3;
Source of termination problem:

The recursive definition of f_c in previous slide is really an equational definition of f_c: interpreting this definition as an “executable function” gets us into trouble in general.

Two important special cases:

- **No recursion in program**: no problem with non-termination in interpreting equational definitions as functions. Determining there is no recursion: call-graph should have no cycles. This idea does not work even in the presence of *static* recursion which even FORTRAN allows. **Static recursion**: text of program has recursive calls; **Dynamic recursion**: at runtime, two or more activations of a procedure coexist at some point in time.

- **Domain is finite**: solve equations iteratively by tabulating values of functions.
Solving recursive function equations by tabulation

- necessary condition: finite lattice

- Example: constant propagation in which all values other than 0 and 1 are set to T.

```
function fc(n,p)
{t1 = t2 = t3 = bottom;
 if (n>p) then t1 = fc(n-1,p);
 else t2 = 1;
 t3 = join(t1,t2);
 return t3;}
```

```
Compute a sequence of approximations to fc as follows:
fc[0] (n,p) = ⊥

fc[i+1](n,p) =
{t1 = t2 = t3 = bottom;
 if (n>p) then t1 = fc[i](n-1,p);
 else t2 = 1;
 t3 = join(t1,t2);
 return t3;}
```

For our example:
fc(n,p) = 1

Computing each element of sequence: make a table of output for each possible input value
Checking convergence: same table is obtained for two successive elements in sequence.
Termination: from monotonicity and finiteness of domain.
What do we do if we have recursion and domain is not finite?

Usual strategy: Replace recursive dataflow function with non-recursive conservative approximation

1. Identify recursive calls in call graph, and approximate their return values to T. Then, solve resulting acyclic problem.

```plaintext
function fc(n,p){
t1 = t2 = t3 = bottom;
if (n > p)
    then t1 = fc(n-1,p);  --->
thent1 = T;
else t2 = 1;
t3 = join(t1,t2);
return t3;}
```

Recursive call identification: back edges in DFS of call-graph (not necessarily unique)
2. Solve context-insensitive problem and use result to approximate the effect of recursive calls.

- value on "return edge" will be an upper bound of possible return values
- replace recursive call with that value and solve acyclic context-sensitive problem

```
fc(n,p) {
    t1 = t2 = t3 = bottom;
    if (n > p)
        then t1 = fc(n-1,p);
    else t2 = 1;
    t3 = join(t1,t2);
    return t3;
}
```
Adding global variables to program model:

GLOBAL G1, G2, G3
MAIN()
 var p,q
 p = f(G1,3); //S1 => MOD-S1 is {p,G2}
 ...
PROCEDURE f(x,y)
 var z,a
 if (x > 0) G2 := x; // S2 => MOD-S2 is {G2}
 z = G1; // S3 => MOD-S3 is {z}
 ...

Still no aliasing.

Inter-procedural dataflow analysis: simple extension of call-by-value case.

(eg) Context-sensitive inter-procedural constant propagation: dataflow function for procedure will have one additional parameter for each global variable.
Exploiting structure in inter-procedural dataflow analysis

- Just as in intra-procedural case, inter-procedural problems may have structure that can be exploited to speed up solution.
- Exploiting intra-procedural structure: as before
- Inter-procedural structure: in the call graph
- For many problems, we can exploit strongly connected components in call graph to speed up analysis (e.g. MOD computation)
Interprocedural dataflow problem: computing MOD [Banning]

For any statement s, the set MOD-s is the set of variables visible to s that may be modified directly or indirectly by execution of s.

```
GLOBAL G1, G2, G3
MAIN()
  var p,q
  p = f(G1,3); // S1 => MOD-S1 is {p,G2}
  ...
PROCEDURE f(x,y)
  var z,a
  if (x > 0) G2 := x; // S2 => MOD-S2 is {G2}
  z = G1; // S3 => MOD-S3 is {z}
  ...f(G1,z)...
```

Auxiliary sets: For any procedure f, GMOD-f is the set of global variables that may be modified directly or indirectly by invoking f.

In example, GMOD-MAIN = {G2}, and GMOD-f = {G2}

For any statement s, MOD-s is the union of

- set of variables that may be modified directly in statement (IMOD)
- set of globals that may be modified directly or indirectly by procedure invocations in s (GMOD)

So given GMOD sets, MOD sets are easy to compute.
How do we compute GMOD sets?

Write down a set of lattice equations and solve them.

- **Lattice**: power-set of global variables
- **Equations**: if procedure f has assignments to globals $G_i,G_j,..$ and it may invoke procedures $g,h,..$ equation for GMOD-f is

$$\text{GMOD-}f = \{G_i,G_j,..\} \cup \text{GMOD-}g \cup \text{GMOD-}h...$$
GLOBAL G1, G2, G3;
MAIN ()
 ... f(...)
 g(...)
 ...f(...)
 ...
 f(..)
 G1 := ...
 ...f(....)
 ...g(....)
 g(....)
 ...h(...).
 G1 := ...
 h(....)
 G3 := ...
 ...g(....)

Program

GMOD-main = GMOD-f U GMOD-g
GMOD-f = {G1} U GMOD-g U GMOD-f
GMOD-g = {G1} U GMOD-h
GMOD-h = {G3} U GMOD-g
Observations

- We can use any iterative technique we discussed in intra-procedural case to solve these inter-procedural equations.
- Is there structure that can be exploited to reduce number of iterations? Yes!!
 - In our problem, information flows from invoked procedure to invokee.
 - So consider equations in “reverse invocation order”. See next slide.
GLOBAL G1, G2, G3;
MAIN ()
 ... f(..)
 g(..)
 ...f(...)
 ...
f(..)
G1 := ...
...f(...)
...g(....)
g(..)
 ...h(...)..
G1 := ...
h(..)
G3 := ...
...g(...)...

Program

Reverse invocation order

Call Graph

GMOD-main = GMOD-f U GMOD-g
GMOD-f = {G1} U GMOD-g U GMOD-f
GMOD-g = {G1} U GMOD-h
GMOD-h = {G3} U GMOD-g
Further simplification: note that GMOD sets for all procedures in a single scc of call graph must be identical.

So collapse equations for all procedures in a single scc into a single equation!

\[\text{GMOD}-g = \{G1\} \cup \text{GMOD}-h \implies \text{GMOD}-gh = \{G1, G3\} \cup \text{GMOD}-gh \]
\[\text{GMOD}-h = \{G3\} \cup \text{GMOD}-g \]

Solving single equation for least solution: trivial! Just drop the recursive term.

So in example, \(\text{GMOD}-g = \text{GMOD}-h = \{G1, G3\} \)
Summary: GMOD/MOD computation for call-by-value language

- Write down GMOD equations for the program.
- Partition equations by scc’s in call graph.
- Collapse equations in each scc into a single equation.
- In reverse topological order of acyclic condensate of call graph, read off solutions to GMOD equations.
- For each statement, compute MOD set.

Complexity: $O(\text{size of program} \times \text{number of variables})$

Note: we can exploit scc’s any time we have a set of equations (eg, block triangular systems in linear algebra)
Running example:

GLOBAL G1, G2, G3;
MAIN ()

... f(...)
.... g(...) ...
...f(...)
...

f(..)
G1 := ...
...f(...)
...g(...)

g(..)
...h(...).
G1 := ...

h(..)
G3 := ...
...g(...).

Program
Call-by-reference

Complications:

1. Effect of a procedure is not just globals it modifies but also what happens to parameters

 \[x := f(G1, w) \] // to compute MOD, we need to know what happens

2. Aliasing: two program names for same location

```plaintext
GLOBAL G1, G2
procedure f(x, y)
  x := 3; // S1
  ....
procedure g(z, w)
  ..f(G1, G2)...f(z, z)...f(w, z)
```

For first call to f, x and y are not aliases
For second call to f, x and y are aliases
For third call to f, x and y are aliases if w and z are aliases!
What is MOD-S1???

Let us handle these problems one at a time.
Aliasing

- **MUST-ALIAS**: two program names that definitely refer to the same memory location.

GLOBAL G1;
procedure f(x) { <---- x and G1 are MUST-ALIASes within f
 x = 7; }
procedure main() {
 f(G1);
 print(G1);
}

MUST-ALIAS is an equivalence relation on names.
• **MAY-ALIAS**: two program names that may or may not refer to the same memory location. MAY-ALIASing usually arises from MUST-ALIASes through loss of information such as when we merge information along different program paths.

```plaintext
GLOBAL G1, G2;
procedure f(x) { ←---- x and G1 are MAY-ALIAS’s within f
    x = 7;}
procedure main() {
    f(G1) + f(G2);
    print(G1);
}
```

MAY-ALIAS relation is reflexive and symmetric but not necessarily transitive.
Representation of aliasing information: alias pairs

GLOBAL G1,G2;
procedure f(x) { //ALIAS = {<x,x>,<x,G1>,<x,G2>}
 x = 7;
}
procedure main() {
 f(G1) + f(G2);
 print(G1); }

If <a,b> does not occur in an ALIAS relation, variables a and b are definitely not aliased at the point in program where ALIAS relation holds.

Some people also store may/must flag with each alias pair.

Alias pairs are an example of store-free alias representation.

Store-based alias representation: see when we talk about pointer analysis.
Using ALIAS relations in inter-procedural dataflow analysis:

For our language model, all statements in a procedure have same alias relation (not true when we have pointers as in C).

Modify the dataflow transfer functions of statement with alias information

- Constant propagation:

  ```plaintext
  procedure f(x,y) {
      x := e;
  }

  function fc(x,y) {
      V-out = {let n = Eval(e,V-in);
              return V-out where
              V-out[i] = V-in[i] if i is not
              V-out[i] = join(Vin[i],n) if i
              V-out[i] = n if i is MUST-ALIAS
          }
  }
  ```
MOD computation: close affected variables under aliasing

GLOBAL G1,G2

procedure f(x,y)
 x := 3; // <-- MOD = \{x,G1,y\}

procedure g(z,w)
 ..f(G1,G2)...f(z,z)...f(w,z)
Computing alias relation for our program model: treat as a dataflow problem...

- Compute one alias set for each procedure.
- Each call-site has an associated transfer function that generates output alias set from alias set of caller (see next slide).
- Alias set of procedure = union of alias sets generated at its call sites.
- Transfer functions are monotonic and lattice is finite.
procedure f(x,y) {
 ...
}
procedure g(a,b,c) { //suppose alias set is A
 f(p,q)... //output alias set is B
}

Transfer(A, list of actuals, list of formals, globals)
B = { };
for each actual parameter p in call do {
 if (p is a global variable) then append <p,x> to B;
 else for each tuple <p,V> in A do
 if V is a global variable then append <x,V> to B;
}
for each pair (p,q) of actual parameters in call do {
 if ((<p,q> is in A) or (p and q are same variable))
 then append <x,y> to B where x/y are formals bound to p/q }
return B;
Example: [adapted from Banning]

GLOBAL x,y,z;
procedure MAIN() ALIAS-MAIN = {}
p1(y); ALIAS-C1 = {<y,y1>}
p1(x); ALIAS-C2 = {<x,y1>}
p3(y,z); ALIAS-C3 = {<y,x3>,<z,y3>}

procedure p3(x3,y3) ALIAS-p3 = ALIAS-C3 U ALIAS-C6
 x3 := ...;
y3 := ...;
x := ...;

procedure p1(y1) ALIAS-p1 = ALIAS-C1 U ALIAS-C2 U ALIAS-C7 U ALIAS-C8
 p2(z); ALIAS-C4 = {<x2,z>}
p2(y1); ALIAS-C5 = Transfer(ALIAS-p1,(y1)->(x2),{x,y,z})
p3(y1,y); ALIAS-C6 = Transfer(ALIAS-p1,(y1,y)->(x3,y3),{x,y,z})

procedure p2(x2) ALIAS-p2 = ALIAS-C4 U ALIAS-C5
 p1(x2); ALIAS-C7 = Transfer(ALIAS-p2,(x2)->(y1),{x,y,z})
p1(z); ALIAS-C8 = {<z,y1>}

Solution: ALIAS-p1 = {<y,y1>,<x,y1>,<z,y1>}
ALIAS-p2 = {<y,x2>,<x,x2>,<z,x2>}
ALIAS-p3 = {<y,y3>,<x,x3>,<z,x3>,<y3,x3>,<y,x3>,<z,y3>}

CALL p1(y) CALL p1(x) CALL p3(y,z)

CALL p3(y1,y)

CALL p2(z) CALL p2(y1)

CALL p1(x2) CALL p1(z)

ALIAS-MAIN = {}

ALIAS-p1

ALIAS-p2

ALIAS-p3
More efficient ways of computing alias sets:

- Determine which globals are aliased with which formals by using *binding graph* (see next slide).
 - Graph has a node for each global and formal parameter; if global/formal v1 is passed to formal v2, put an edge from v1 to v2.
 - All formals reachable from node for global g are aliased to g.
- Determining which formals are aliased to each other: use *pairwise binding graph*. Left to reader.
Structure of binding graph:
- one node for each reference parameter and global
- if procedure f passes its reference parameter/global r1 to procedure g as reference parameter r2, put an edge from r1 to r2

Finding aliases between globals and formals:
all reference parameters reachable from a global variable in the binding graph may be aliased to that global

In our example:
- x may be aliased to y1, x3, x2
- y may be aliased to y1, y3, x2, x3
- z may be aliased to y1, x2, x3
Concern 2: GMOD must tell us what happens to globals AND parameters.

One model: make GMOD into a function from variables to variables

\[w := f(G4, s); \quad //S1 \]

```
procedure f(x, y) => GMOD-f(v1, v2)
    var a, b;
    G1 := 5;
    if (y>x) x := 7;
    ...
return \{G1, v1\}
```

Intuition: (assuming s,w have no non-trivial aliases)

\[\text{MOD-S1} = \{w\} \cup \text{GMOD-f}(G4, s) = \{w\} \cup \{G1, G4\} = \{w, G1, G4\} \]
Example: [adapted from Banning]

GLOBAL x,y,z;
procedure MAIN() GMOD-MAIN()
p1(y);
 return GMOD-p1(y) U GMOD-1(x) U GMOD-p3(y,z)
p1(x);
p3(y,z);

procedure p3(x3,y3) GMOD-p3(m,n)
x3 := ...;
 return {m,n,x}
y3 := ...;
x := ...;

procedure p1(y1) GMOD-p1(m)
p2(z);
 return GMOD-p2(z) U GMOD-p2(m) U GMOD-p3(m,y)
p2(y1);
p3(y1,y);

procedure p2(x2) GMOD-p2(m)
p1(x2);
 return GMOD-p1(m) U GMOD-p1(z)
p1(z);

Need to solve recursive functional equations.
Without recursion, we can use “interpret equations as program” trick.

Another approach: since our lattice is finite, we can always use tabular approach.

\[
\begin{align*}
\text{GMOD-p3}(m, n) & \quad \text{return } \{m, n, x\} \\
\text{GMOD-p1}(m) & \quad \text{return } \text{GMOD-p2}(z) \cup \text{GMOD-p2}(m) \cup \text{GMOD-p3}(m, y) \\
\text{GMOD-p2}(m) & \quad \text{return } \text{GMOD-p1}(m) \cup \text{GMOD-p1}(z)
\end{align*}
\]

Iterations:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>final</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMOD-p3(m, n):</td>
<td>{}</td>
<td>{m, n, x}</td>
<td>{m, n, x}</td>
<td>...</td>
<td>{m, n, x}</td>
</tr>
<tr>
<td>GMOD-p2(m):</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>...</td>
<td>{m, y, x, z}</td>
</tr>
<tr>
<td>GMOD-p1(m):</td>
<td>{}</td>
<td>{}</td>
<td>{m, y, x}</td>
<td>...</td>
<td>{m, y, x, z}</td>
</tr>
</tbody>
</table>
Exploiting structure for computing GMOD

- **call-by-value**: we found GMOD sets without iteration
 - find scc’s in call graph
 - for each scc, compute union of side-effects to globals by procedures in scc
 - propagate GMOD sets in reverse invocation order

- can we use this trick for call-by-reference as well?

- **Problem**: GMOD sets contain both globals and parameters, so GMOD sets of mutually recursive procedures will be different in general.

- **Idea**: separate computation of side-effects to parameters from side-effects to globals
Side-effects to parameters:

procedure f(a,b) ...

RMODf-a = true if execution of f modifies a directly or indirectly

GLOBAL x,y,z;
procedure MAIN()
 p1(y);
 p1(x);
 p3(y,z);

procedure p3(x3,y3) RMODp3-x3 = true
 x3 := ...; RMODp3-y3 = true
 y3 := ...;
 x := ...;

procedure p1(y1) RMODp1-y1 = RMODp2-x2 V RMODp3-x3
 p2(z);
 p2(y1);
 p3(y1,y);

procedure p2(x2) RMODp2-x2 = RMODp1-y1
 p1(x2);
 p1(z);

Solution: RMODp3-x3 = RMODp3-y3 = RMODp1-y1 = RMODp2-x2 = true
Graphical way of solving RMOD equations: marker propagation

A reference parameter of a procedure \(f \) may be modified by execution of \(f \) if
- \(f \) may write to parameter directly
- \(f \) passes it to procedure \(g \) as a reference parameter, and \(g \) may modify the parameter

Reverse of Binding Graph

RMOD computation
- build reverse of binding graph (ignore globals)
- if \(f \) modifies reference parameter \(r1 \) directly, put a mark on \(r1 \)
- propagate marks along reverse binding graph edges
- at the end of propagation, any variable that is marked corresponds to a reference parameter that may be modified
Side-effects to globals: similar to call-by-value

GLOBAL x,y,z;
procedure MAIN()
 p1(y);
 p1(x);
 p3(y,z);

procedure p3(x3,y3) GLOBALp3 = {x}
 x3 := ...;
 y3 := ...;
 x := ...;

procedure p1(y1) GLOBALp1 = GLOBALp2 U GLOBALp3
 p2(z);
 p2(y1);
 p3(y1,y);

procedure p2(x2) GLOBALp2 = GLOBALp1
 p1(x2);
 p1(z);

Solution: GLOBALp1 = GLOBALp2 = GLOBALp3 = {x}
From RMOD and GLOBALS, we can read off GMOD sets:

\[
\text{GMODp1}(m) = \{x, m\} \\
\text{GMODp2}(m) = \{x, m\} \\
\text{GMODp3}(m, n) = \{x, m, n\}
\]

Oops...

What went wrong?
We did not take into account side-effects to globals that were passed as parameters! [Kennedy and Cooper]

Correct equations for GLOBAL sets: use RMOD information for globals passed as parameters:

GLOBAL x,y,z;
procedure MAIN()
 p1(y);
 p1(x);
 p3(y,z);

procedure p3(x3,y3) GLOBALp3 = {x}
 x3 := ...;
 y3 := ...;
 x := ...;

procedure p1(y1) GLOBALp1 = {z} U GLOBALp2 U GLOBALp3 U {y}
 p2(z);
 p2(y1);
 p3(y1,y);

procedure p2(x2) GLOBALp2 = {z} U GLOBALp1
 p1(x2);
 p1(z);

This gives the correct sets.
Algorithm for side-effects to globals: GLOBAL

- Find acyclic condensate of the call graph.
- For each procedure, determine set of globals either assigned to directly in procedure or passed by reference as a parameter to a procedure that modifies that parameter (use RMOD information for this).
- Union these sets for all procedures in an scc.
- Propagate these global sets in reverse invocation order in the acyclic condensate.
Putting it all together: GMOD computation

- **Compute RMOD information**
 - build binding graph
 - mark every node that represents a reference parameter modified directly by its procedure
 - propagate marks in binding graph: efficient approach would compute SCC’s and propagate in acyclic condensate
 - for each procedure f, read off RMOD-f = set of reference parameters of f that are marked.

- **Compute GLOBALs information**
 - build call graph
 - for each procedure, find all globals that are either modified directly by procedure or passed as a reference parameter to another procedure that modifies that parameter (use
RMOD for this)

- find scc’s of call graph and propagate sets in reverse invocation order.

- From RMOD and GLOBALs sets, read off GMOD function for each procedure f.
Summary

• Inter-procedural dataflow analysis: unknowns are functions on dataflow values
• Need to solve recursive functional equations
• Important special cases for which exact solution is possible
 • finite lattice: use tabular method
 • acyclic call graph: interpret equations as program
• Approximate solution of functional equations: approximate effect of backedges in call-graph
• Call-by-reference: need to take aliases into account
• Some interprocedural dataflow analysis problems can be reduced to marker propagation by formulating in the right graph. Key structure to exploit: strongly connected components in call graph.