1 Review of CBN and CBV Semantics

\[e ::= x \mid \lambda x e \mid e_0 e_1 \]
\[v ::= \lambda x e \]

Call By Name Semantics:

\[C[(\lambda x e_0) e_1] \mapsto C[e_0 \{e_1/x\}] \]
\[C ::= [\cdot] \mid C e \]

Call By Value Semantics:

\[C[(\lambda x e) v] \mapsto C[e \{v/x\}] \]
\[C ::= [\cdot] \mid C e \mid v C \]

2 CBV Translation and Notes

Call By Name to Call By Value Translation For compactness we omit the name of the translation and just treat \([\cdot]\) as a semantic function itself

\[
\begin{align*}
[x] &= x I = x (\lambda y y) \\
[\lambda x e] &= \lambda x [e] \\
[[e_0 e_1]] &= [[e_0]] (\lambda z [[[e_1]]])
\end{align*}
\]

Expressing semantics through translations is a style of semantics known as denotational semantics, although the target language is usually mathematical functions rather than \(\lambda\)-calculus terms. We’ll see true denotational semantics later in the course.

3 Soundness and Adequacy in CBV semantics

Soundness: \(e \mapsto^* v \Rightarrow \exists v'[e] \mapsto^* v' \land v' \approx [v] \)

Adequacy: \(\exists v' e \mapsto^* v \land v' \approx [v] \Leftarrow [e] \mapsto^* v' \)

Basic idea of soundness is saying that the operational semantics doesn’t break the meaning (with respect to the translation) of the program as it executes.

Proof of soundness

We will show that if \(e \mapsto e'\) in CBN then \([e] \approx [e']\)

We will prove this by induction on the form of \(C_N\).
For \(C_N = \{ \} \) we have \(C_N[(\lambda \ x \ e_0) \ e_1] \mapsto C_N[e_0\{e_1/x\}] \) or equivalently \((\lambda \ x \ e_0) \ e_1 \mapsto e_0\{e_1/x\} \). So we have to show that \([e_0]\{\lambda \ z \ [e_1]/x\} \approx [e_0\{e_1/x\}] \).

We will show this by structural induction on \(e_0 \).

If \(e_0 = x \) then we have:

\[
[e_0]\{\lambda \ z \ [e_1]/x\} \approx (x \ I)\{\lambda \ z \ [e_1]/x\} \approx \lambda \ z \ [e_1] I \approx [e_1] \approx [x\{e_1/x\}] \approx [e_0\{e_1/x\}]
\]

If \(e_0 = y \) with \(y \neq x \) then we have:

\[
[e_0]\{\lambda \ z \ [e_1]/x\} \approx (y \ I)\{\lambda \ z \ [e_1]/x\} \approx y \ I \approx [y] \approx [y\{e_1/x\}] \approx [e_0\{e_1/x\}]
\]

If \(e_0 = \lambda \ x \ e_2 \) we have:

\[
[\lambda \ x \ e_2]\{\lambda \ z \ [e_1]/x\} \approx (\lambda \ x \ [e_2])\{\lambda \ z \ [e_1]/x\} \approx [(\lambda \ x \ e_2)\{e_1/x\}] \approx [e_0\{e_1/x\}]
\]

If \(e_0 = \lambda \ y \ e_2 \) we have:

\[
[\lambda \ y \ e_2]\{\lambda \ z \ [e_1]/x\} \approx (\lambda \ y \ [e_2])\{\lambda \ z \ [e_1]/x\}
\]

Given that \(e_2 \) is a subexpression of \(e_0 \) we can apply the induction hypothesis obtaining:

\[
\lambda \ y \ ([e_2]\{\lambda \ z \ [e_1]/x\}) \approx \lambda \ y \ [e_2\{e_1/x\}] \approx [(\lambda \ y \ e_2)\{e_1/x\}] \approx [e_0\{e_1/x\}]
\]

If \(e_0 = e_2 \) then we have:

\[
[e_2]\{\lambda \ z \ [e_1]/x\} \approx ([e_2]\{\lambda \ z \ [e_3]/x\})\{\lambda \ z \ [e_1]/x\} \approx ([e_2]\{\lambda \ z \ [e_1]/x\})(\lambda \ z \ [e_3])\{\lambda \ z \ [e_1]/x\}) \approx \\
\approx ([e_2]\{\lambda \ z \ [e_1]/x\})(\lambda \ z \ [e_3])\{\lambda \ z \ [e_1]/x\}) \approx \\
\approx [e_2\{e_3\}(e_1/x)] \approx [e_0\{e_1/x\}]
\]

This concludes our proof that \([e_0]\{\lambda \ z \ [e_1]/x\} \approx [e_0\{e_1/x\}] \).

Now, for \(C_N = C'_N \ e'' \) we have \(C'_N[(\lambda \ x \ e_0) \ e_1]e'' \mapsto C'_N[e_0\{e_1/x\}]e'' \). Because \(C'_N \) is a subexpression of \(C_N \) we have \([C'_N[(\lambda \ x \ e_0) \ e_1]] \approx [C'_N[e_0\{e_1/x\}]] \) according to the induction hypothesis. So we have (with induction on structure of \(C_N \), now):

\[
[C'_N((\lambda \ x \ e_0) \ e_1)e''] \approx [C'_N((\lambda \ x \ e_0)\{e_1\})](\lambda \ z \ [e'']) \approx [C'_N[e_0\{e_1/x\}]](\lambda \ z \ [e'']) \approx [C'_N[e_0\{e_1/x\}]]e''
\]

4 Extending the CBV Lambda Calculus

4.1 Adding If’s and booleans

\[
e ::= \ldots \mid \#t \mid \#f \mid \text{if } e_0 \text{ then } e_1 \text{ else } e_2
\]

\[
v ::= \ldots \mid \#t \mid \#f
\]

SOS:

\[
C ::= \ldots \mid \text{if } C \text{ then } e_1 \text{ else } e_2
\]

\[
\frac{e \mapsto e'}{C[e] \mapsto C[e']}
\]

\[
\frac{\text{if } t \text{ then } e_1 \text{ else } e_2 \mapsto e_1}{\text{if } \#t \text{ then } e_1 \text{ else } e_2 \mapsto e_1}
\]

\[
\frac{\text{if } f \text{ then } e_1 \text{ else } e_2 \mapsto e_2}{\text{if } \#f \text{ then } e_1 \text{ else } e_2 \mapsto e_2}
\]

\[
[\#t] = \lambda \ x \ y \ (x \ I)
\]

\[
[\#f] = \lambda \ x \ y \ (y \ I)
\]

\[
[\text{if } e_0 \text{ then } e_1 \text{ else } e_2] = [e_0] (\lambda \ z \ [e_1]) (\lambda \ z \ [e_2])
\]

Note that this translation has no error checking for the case where \#t or \#f are not first argument to an if expression.
4.2 Adding Let’s

\[e ::= \ldots \mid \text{let } x = e_1 \text{ in } e_2 \]

SOS:

\[C ::= \ldots \mid \text{let } x = C \text{ in } e_2 \]

\[
\text{let } x = v \text{ in } e \rightarrow e\{v/x\}
\]

\[[\text{let } x = e_1 \text{ in } e_2] = (\lambda x \ [e_2]) \ [e_1]\]

4.3 Adding Pairs

\[e ::= \ldots \mid \langle e_1, e_2 \rangle \mid \text{left } e \mid \text{right } e \]
\[v ::= \ldots \mid \langle v_1, v_2 \rangle \]

SOS:

\[C ::= \ldots \mid \langle C, e \rangle \mid \langle v, C \rangle \mid \text{left } C \mid \text{right } C \]

\[
\text{left } \langle v_1, v_2 \rangle \rightarrow v_1 \quad \text{right } \langle v_1, v_2 \rangle \rightarrow v_2
\]

\[[\langle e_1, e_2 \rangle] = (\lambda x \lambda y \lambda f \ f x y) \ [e_1] \ [e_2] \]
\[[\text{left } e] = [e] (\lambda x \lambda y \ x) \]
\[[\text{right } e] = [e] (\lambda x \lambda y \ y) \]