A configuration is a tuple of the form \(\langle c, \sigma \rangle \), where \(c \) is the command to be executed, and \(\sigma \) is the current store. The program terminates when we reach a configuration of the form \(\langle \text{skip}, \sigma \rangle \). The idea behind small-step semantics is that we make one small step at a time. A small step is the evaluation of some part of the expression. The notation is as follows: if \(a \) denotes some arithmetic expression, then \(a' \) denotes \(a \) after one small step was made. Similarly, if \(b \) is a boolean expression, then \(b' \) is \(b \) after one small step. These notes cover the small-step semantics.

Rules are of the form \(\langle c, \sigma \rangle \mapsto \langle c', \sigma' \rangle \), where \(\mapsto \subseteq (\text{Com} \times \text{Store}) \times (\text{Com} \times \text{Store}) \)

1 Commands

1.1 Skip
\(\langle \text{skip}, \sigma \rangle - \) we are at the final step. No rule is needed.

1.2 Assignment

\[
\begin{align*}
\langle a, \sigma \rangle &\mapsto \langle a', \sigma \rangle \\
\langle x := a, \sigma \rangle &\mapsto \langle x := a', \sigma \rangle \\
\langle x := n, \sigma \rangle &\mapsto \langle \text{skip}[x \mapsto n], \sigma \rangle
\end{align*}
\]

1.3 ; (Semicolon)

\[
\begin{align*}
\langle c_0, \sigma \rangle &\mapsto \langle c'_0, \sigma' \rangle \\
\langle c_0; c_1, \sigma \rangle &\mapsto \langle c'_0; c_1, \sigma' \rangle \\
\langle \text{skip}; c_1, \sigma \rangle &\mapsto \langle \text{skip}[x \mapsto n], \sigma \rangle
\end{align*}
\]

1.4 If

\[
\begin{align*}
\langle b, \sigma \rangle &\mapsto \langle b', \sigma \rangle \\
\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle &\mapsto \langle \text{if } b' \text{ then } c_0 \text{ else } c_1, \sigma \rangle \\
\langle \text{if } \text{true} \text{ then } c_0 \text{ else } c_1, \sigma \rangle &\mapsto \langle c_0, \sigma \rangle \\
\langle \text{if } \text{false} \text{ then } c_0 \text{ else } c_1, \sigma \rangle &\mapsto \langle c_1, \sigma \rangle
\end{align*}
\]

1.5 While

\[
\langle \text{while } b \text{ do } c, \sigma \rangle \mapsto \langle \text{if } b \text{ then } (c; \text{ while } b \text{ do } c) \text{ else } \text{skip}, \sigma \rangle
\]

1.6 Variable evaluation

\[
\langle x, \sigma \rangle \mapsto \langle \sigma(x), \sigma \rangle
\]
2 Order of evaluation

Some rules enforce the order of evaluation and other rules actually evaluate. For instance, simply having the rule on the left will force left-to-right evaluation, while having both allows evaluation of the right side before the evaluation of the left side has been completed:

\[
\begin{align*}
\langle a_0, \sigma \rangle &\mapsto \langle a_0', \sigma \rangle \\
\langle a_0 + a_1, \sigma \rangle &\mapsto \langle a_0' + a_1, \sigma \rangle \\
\langle a_1, \sigma \rangle &\mapsto \langle a_1', \sigma \rangle \\
\langle a_0 + a_1, \sigma \rangle &\mapsto \langle a_0 + a_1', \sigma \rangle
\end{align*}
\]

3 Arithmetic Expressions

Evaluation of arithmetic expressions proceeds as normal with addition (left rule):

\[
\begin{align*}
\langle n = n_0 + n_1, \sigma \rangle &\mapsto \langle n, \sigma \rangle \\
\langle n_0 + n_1, \sigma \rangle &\mapsto \langle n, \sigma \rangle
\end{align*}
\]

The rule for division (right rule above), however, cannot be accepted since it may result in a runtime error on \((2 \div 0, \sigma) \mapsto ? \), resulting in a stuck configuration.

4 Parallelism

Since the commands in the language \texttt{IMP} may lack interdependency on each other, we may allow command evaluation to proceed in parallel as given by these inference rules:

\[
\begin{align*}
\langle c_0, \sigma \rangle &\mapsto \langle c_0', \sigma' \rangle \\
\langle c_0 | c_1, \sigma \rangle &\mapsto \langle c_0', c_1, \sigma \rangle \\
\langle c_1, \sigma \rangle &\mapsto \langle c_1', \sigma' \rangle \\
\langle c_0 | c_1, \sigma \rangle &\mapsto \langle c_0 | c_1', \sigma \rangle
\end{align*}
\]

This allows evaluation of either commands in a pair of parallel commands proceed before completion of evaluation of the other.

5 Non-determinism

Non-determinism allows us to specify that either of two commands will be executed at run time:

\[
\langle c_0 \bigtriangleup c_1, \sigma \rangle \mapsto \langle c_0, \sigma \rangle \quad \langle c_0 \bigtriangleup c_1, \sigma \rangle \mapsto \langle c_1, \sigma \rangle
\]

It is interesting to note that we could not specify either parallelism or non-determinism using large-step semantics, but small-step semantics allow us to express both succinctly.

6 Equivalence of Large- and Small-Step Semantics

In addition, it turns out that large-step semantics are equivalent to small-step semantics. Define the relation \(\mapsto^* \) as follows:

\[
\begin{align*}
\langle c, \sigma \rangle &\mapsto^* \langle c, \sigma \rangle \\
\langle c, \sigma \rangle &\mapsto^* \langle c', \sigma' \rangle \\
\langle c', \sigma' \rangle &\mapsto^* \langle c'', \sigma'' \rangle
\end{align*}
\]

The idea is to prove that

\[
\langle c, \sigma \rangle \Downarrow \sigma' \iff \langle a, \sigma \rangle \mapsto^* \langle \text{skip}, \sigma' \rangle
\]

Proof (this lecture covered only arithmetic expressions): by induction on the depth of the abstract syntax tree of the expression. For arithmetic expressions we need

\[
\bullet \langle a, \sigma \rangle \Downarrow n \iff \langle a, \sigma \rangle \mapsto^* \langle n, \sigma \rangle
\]
• \langle x, \sigma \rangle \Downarrow \sigma(x) \iff \langle x, \sigma \rangle \mapsto^* \langle \sigma(x), \sigma \rangle \\
• \langle a_0 \oplus a_1, \sigma \rangle \Downarrow n \iff \langle a_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n, \sigma \rangle \\

The first two cases are trivial.

Now assume \langle a_0 \oplus a_1, \sigma \rangle \Downarrow n. Then \langle a_0, \sigma \rangle \Downarrow n_0 and \langle a_1, \sigma \rangle \Downarrow n_1, where n_0 \oplus n_1 = n. By induction hypothesis, \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle and \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle, since the tree associated with a_0 and the tree associated with a_1 are both less deep than the tree associated with a_0 \oplus a_1. Therefore, by induction, we have \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle, and \langle a_0, \sigma \rangle \mapsto^* \langle n_0, \sigma \rangle. Thus, \langle a_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n_0 \oplus a_1, \sigma \rangle \mapsto^* \langle n_0 \oplus n_1, \sigma \rangle \mapsto \langle n, \sigma \rangle.

The other direction was not covered in lecture.