Fixed points

- Denotational semantics for IMP rely on taking fixed point to define `while`
- Fixed points occur in most language definitions: needed to deal with loops
 - control flow loops: while
 - data loops: recursive functions, recursive data structures, recursive types
- Only know how to find least fixed pts for continuous functions `f`
- Need easy way to ensure continuity

Meta-language

- Idea: define restricted language for expressing mathematical functions
- All functions expressible in this language are continuous
- Looks like a programming language (ML)
 - not executed: just mathematical notation
 - can talk about non-termination!
 - “evaluation” is lazy (vs. eager in ML)

“Types” for Meta-language

- Meta-language contains domain declarations indicating the set of values meta-variables can take on, e.g.
 - `λf ∈ Σ → Σ. λσ ∈ Σ. if ¬[b] σ then σ else f([c])`
- Domains will function as types for meta-language
 - but with precisely defined meaning, ordering relation, etc.
- `T_1 * T_2` is not necessarily modeled by `T_1 × T_2`
- Meta-language consists of domains and associated operations

Lifting

- If `D` is a domain (for now: cpo), can “lift” by adding new bottom element to form pointed cpo `D_⊥`
- cpo defined by underlying set plus complete ordering relation `⊆`
- Elements of `D_⊥` are `[d]_⊥` where `d ∈ D`
- Ordering relation:
 - `<[d_1] ⊆ [d'_1]` if `d_1 ⊆ d'_1`
- Complete?
Discrete cpos

- Various discrete cpos: booleans (T), natural numbers (ω), integers (Z), ...
- Corresponding functions over discrete cpos exist: \(+ : Z \rightarrow Z, \wedge : T \rightarrow T \)
- Often want to lift discrete cpos to take fixed points; helpful to extend fns to pointed cpos
 - If \(f : D \rightarrow E \), then \(f \in D_1 \rightarrow E_1, f' \in D_2 \rightarrow E \) are \(f_1 = \lambda d \in D_1. \text{if } d=1 \text{ then } \perp \text{ else } f(d) \)
 - \(f' = \lambda d \in D_2. \text{if } d=1 \text{ then } \perp \text{ else } f(d) \) (if \(E \) pointed)
- \(2 + 2 = 4, \ 3 + 1 = 1, \ \perp \wedge \perp \), \(\perp \) true = true
- If \(f \) continuous, are \(f \perp \) ?

Unit

- Simplest cpo: empty set (\(\emptyset \))
- Next simplest: unit domain (U)
 - single element: \(u \)
 - ordering relation: reflexive \(\cdot \)
 - complete: only directed set is \(\{u\} \)
- Used to represent computations that terminate but do not produce a value, argument for functions that need no argument
- Also building block for other domains

Let

- Useful syntax: given \(d_1, D_1 \)

 \[
 \lambda x \in D_1. e \equiv (\lambda x \in D_1. e)^d
 \]

- Expresses evaluation of \(e \) that is strict in \(d \)
- Example: \(\text{\l[while]} \)

 \[
 \text{fix } f : \Sigma_1 \rightarrow \Sigma_1. \text{let } \sigma = \sigma' \text{ in if } \sigma[b] = \sigma \text{ then } \sigma \text{ else } f(\sigma[c])
 \]

Products

- If \(D_i, D_j \) are domains, then \(D_1 \times D_2 \) is a product domain
- Underlying set: pairs \(\langle d_1, d_2 \rangle \) where \(d_i \in D_i \)
- Ordering: \(\langle d_1, d_2 \rangle \leq \langle d'_1, d'_2 \rangle \) iff \(d_i \leq d_i', \forall i \leq m \)
 - Extends to \(n \)-tuples
 - Operations:
 - tupling: \(\langle d_1, \ldots, d_m \rangle \)
 - projection: \(\pi_i (\langle d_1, \ldots, d_m \rangle) = d_i \)

CPO?

- Is product domain a cpo if \(D_i, D_j \) are?
- Any chain \(\langle d_0, d'_0 \rangle \leq \langle d_1, d'_1 \rangle \leq \ldots \) must have LUB in \(D_1 \times D_2 \)
- Definition of \(\leq : d_0 \leq d_1 \leq \ldots \) is chain in \(D_1 \), \(d'_0 \leq d'_1 \leq \ldots \) is chain in \(D_2 \)
- If \(d_m \in D_1, d'_m \in D_2 \) are respective LUBs, \(\langle d_m, d'_m \rangle \in D_1 \times D_2 \) is LUB of chain of pairs
- Operations continuous?
 - \(\bigcup \mathcal{X}_n = \bigcup \mathcal{X}_n' = \bigsqcup d_m \)
 - \(\bigcup (\mathcal{X}_n, \ldots, \mathcal{X}_m) = \bigsqcup (\mathcal{X}_n, \ldots, \mathcal{X}_m) \)

Sums

- Sometimes want to allow values of one kind or another: \(D_1 \uplus D_2 \)
- Elements of domain are elements of \(D_k \) or \(D_m \) tagged with origin: \(\text{in}(d_k) \)
 - Form of \(\text{in} \) is irrelevant (could be \(\lambda d. (i, d) \))
 - Preserves ordering of individual domains: \(\text{in}(d_k) \leq \text{in}(d_m) \) iff \(i=j, d_i \leq d_j \)
 - Injection function \(\text{in} \) is continuous
 - Extends naturally to multi-domain sum
- CPO, but not pointed

Diagram

- Hasse diagram
- Elements of domain are \(\pi_1 \) and \(\pi_2 \)
- Operation: \(\pi_i \) (\(\langle d_1, \ldots, d_m \rangle \) = \(d_i \))

Note

- Sometimes want to lift discrete cpos to take fixed points; helpful to extend functions to pointed cpos
- If \(f : D \rightarrow E \), then \(f \in D_1 \rightarrow E_1, f' \in D_2 \rightarrow E \) are \(f_1 = \lambda d \in D_1. \text{if } d=1 \text{ then } \perp \text{ else } f(d) \)
- \(f' = \lambda d \in D_2. \text{if } d=1 \text{ then } \perp \text{ else } f(d) \) (if \(E \) pointed)
- \(2 + 2 = 4, \ 3 + 1 = 1, \ \perp \wedge \perp \), \(\perp \) true = true
- If \(f \) continuous, are \(f \perp \) ?
Sums, cont’d
- Why tag? Distinguishes identical domains
 - T = U + U, true = in₁(u), false = in₂(u)
- Sums unpacked with case construction:
 \(\text{case } e \text{ of } x₁ \rightarrow e₁ | x₂ \rightarrow e₂ = \text{ case } e \text{ of } D₁(x₁).e₁ | D₂(x₂).e₂ \)
- Given \(e = \text{in}_1(d₁) \), has value \(f(d₁) \in E \) where \(f \in D₁ \rightarrow E = (λx.∈D₁.e) \)
- Continuous function of \(e \) if all \(f \) continuous:
 \[\text{case } e \text{ of } ... = \text{ case } \bigcup_{n} e \text{ of } ... \]
- Also continuous function of each \(f_i \)
 \[\text{case } e \text{ of } f_i \in \bigcup_{n} f = \text{ case } e \text{ of } \bigcup_{n} f \in \bigcup_{n} f(d_i) \]

Continuous functions
- Given cpos \(D, E \), define \(D \rightarrow E \) as domain of continuous functions mapping \(D \) to \(E \) (subset of \(E^D \))
- Pointwise ordering: \(f \sqsubseteq g \iff f(d) \sqsubseteq g(d) \)
- Complete?
 \[\bigcup_{n} f(n) = \lambda d \in D . \bigcup_{n} f(n)(d) \text{ continuous?} \]
 \[(λd.\bigcup_{n} f(n)(d))((\bigcup_{m} d_m) = \bigcup_{m} (λd.\bigcup_{n} f(n)(d))(d_m) \]

Proof of Continuity
\[(λd \in D . \bigcup_{n} f(n)(d)) \bigcup_{m} d_m = \bigcup_{m} (λd \in D . \bigcup_{n} f(n)(d) \bigcup_{m} d_m) \]
\[= \bigcup_{m} \bigcup_{n} f(n)(d_m) \]
\[= \bigcup_{m} \bigcup_{n} f(n)(d_m) \]
\[= \bigcup_{m} \bigcup_{n} f(n)(d_m) \]
\[= \bigcup_{m} \bigcup_{n} (λd \in D . \bigcup_{n} f(n)(d)) \bigcup_{m} d_m) \]

Lemma
\[\bigcup_{n} \bigcup_{m} f(n)(d_m) = \bigcup_{n} f(n)(d_n) = \bigcup_{m} \bigcup_{n} f(n)(d_m) \]
Let \(n \leq m' \Rightarrow e_{nm} \subseteq e_{n'm'} \)
\[e_{nm} \subseteq e_{n'm'} \text{ for } n' = \text{max}(m, n), \text{ so } \bigcup_{n,m} e_{nm} \subseteq \bigcup_{n} e_{n'm} \]
\[e_{nm} \subseteq e_{n'm} \text{ so } \bigcup_{n} e_{nm} \subseteq \bigcup_{n} \bigcup_{m} e_{nm} \subseteq \bigcup_{n,m} e_{nm} \]

Operations on functions
- \(\text{apply } \in (D \rightarrow E) \times D \rightarrow E = \lambda p.\pi.p\pi.p \)
- \(\text{curry } \in ((D \rightarrow E) \rightarrow F) \rightarrow ((D \rightarrow E) \rightarrow F) \)
 \[= λf.\pi.e.\lambda d.\lambda e.\pi.f(\langle d, e \rangle) \]
- \(\text{compose } \circ \in (D \rightarrow E) \times (E \rightarrow F) \rightarrow (D \rightarrow F) \)
 \[= \lambda (f, g).\lambda d.\pi.\pi.f(\pi.g(d)) \]
- \(\text{fix } \in (D \rightarrow D) \rightarrow D \) (\(D \) pointed)
 \[= \lambda g.\pi.e.\lambda d.\pi.g^\pi(\perp) \]
 \[= \bigcup_{n} \lambda g.\pi.e.\lambda d.\pi.g^\pi(\perp) \] (LUB of \(\text{cont.functions} \))

Meta-Language
- Have defined various constructs that we can use to define continuous functions
- Constructs are a syntax for a meta-language in which only continuous functions can be defined
- How do we know when expression \(\lambda x.e \) is continuous?
- Idea: use structural induction on form of \(e \) so every syntactically valid \(e \) can be abstracted over any variable to produce continuous function
- Problem: structural induction \(\rightarrow \) need to consider open terms \(e \)
Continuity in variables

- Idea: consider a meta-language expression \(e \) to be implicitly function of its free variables
- \(e \) is continuous in variable \(x \) if \(\lambda x. e \) is continuous for arbitrary values of other (non-\(x \)) free variables in \(e \)
- \(e \) is continuous in variables not free in \(e \)
- structural induction: for each syntactic form, show that term is continuous in variables assuming sub-terms are