Goals

- Deeper understanding of PL's
- Broader exposure to PL's
- Not a survey course

Why study PL?

- Elegant math, practical impact
 - a study of expressive power
 - caveat: comfort with logic, proofs, Ch. 1
- Better language design
 - how to specify
 - how to prove correct
 - embarrassing questions to ask
- Better language implementation
 - efficient implementation (more in CS 412)
 - correct implementation
- Better programmer
 - understand your tools (and which ones to use)

Schedule

- Operational semantics 5
- Inductive proofs 3
- Lambda calculus 3
dynamic
- Denotational semantics 4
- Interesting language features 8
- Type systems 4
- Interesting types 8
- Miscellaneous topics 3
static

Workload

- Sign-up sheet
- Readings (see course schedule)
- 6 homeworks (about half with programming component, in ML)
- Scribe 3-4 lectures (in pairs)
 - we will provide TeX template
 - meet with me for feedback
- Prelim: tentatively Oct. 26, 7-9:30PM
- Final exam: Dec. 7, 12-2:30PM

Course Staff

- Lecturer: Andrew Myers
 andru@cs.cornell.edu
 Upson 4124
 Office hours: Wed 3-4PM
- TA: Matthew Fluet
 Email: cs611@cs.cornell.edu
 Upson 4162
 Office hours: TBA
 Web site: courses.cs.cornell.edu/cs611
Texts

- **Required:**
 - Winskel, *The Formal Semantics of Programming Languages*
- **Recommended:**
 - Gunter, *Semantics of Programming Languages*
 - Mitchell, *Foundations of Programming Languages*
 - Gifford (will be placed on-line; may be used only for this course)

IMP

- Winskel, Ch. 2
- Simple imperative language (vs. functional)
- IMP program is a *command*
 - `skip`
 - `X := a`
 - `c_0; c_1`
 - `if b then c_0 else c_1`
 - `while b do c`
- Variables `(X)` take integer values
- Arithmetic exprs `a`, boolean expressions `b`

Example: GCD

```plaintext
while x ≠ y do
  if x < y then
    y := y – x
  else
    x := x – y
end
```

- Turing-complete (barely): no functions, data structures

Issues

- What is a legal program in IMP?
 - defined by abstract syntax
- What is a legal program execution in IMP?
 - structural operational semantics
- Other properties of interest
 - expressions terminate, commands may not
 - programs never "crash"
 - evaluation is deterministic

Defining Syntax

- Three *syntactic sets*:
 - `Aexp`: set of legal arithmetic expressions `a`
 - `Bexp`: legal boolean expressions `b`
 - `Com`: legal commands `c`
- Define legal programs inductively using Backus-Naur form (BNF):
 - `a ::= n | X | a_0 + a_1 | a_0 * a_1 | a_0 - a_1`
 - `b ::= a_0 = a_1 | a_0 ≤ a_1 | b_0 ∧ b_1 | b_0 ∨ b_1 | ¬b`
 - `c ::= skip | X := a | c_0; c_1 | if b then c_0 else c_1 | while b do c`
 - `X ∈ Loc`, `n ∈ Z`

Abstract Syntax

- This course: not about parsing
- Elements of syntactic set are *parse trees*, not concrete syntax
  ```plaintext
  3 + 4 * x = \(\frac{3 + 4 \cdot x}{4}\) ≠ "3+4\(\cdot\)x"
  ```
- But...will write expressions that look concrete
 - parentheses used to disambiguate parsing when necessary: `(3+4)`’5` vs. `3+(4`’5`)
 - not part of abstract syntax
Operational Semantics

- Any element of Com is a legal program. How does it evaluate?
- Defining process of program evaluation: operational semantics
- Java language reference manual: verbose, long operational semantics
- Structural operational semantics: legal executions correspond to proofs
 - compact
 - convenient for proving properties of language

Configurations

- A configuration: what we need to know about a running program to define how it executes

Large-step evaluation

- Large-step semantics define complete evaluation of a program or subexpression

Some evaluations

\[\langle X, \sigma \rangle \Downarrow \sigma(X) \] for any \(\sigma, X \)
\[\langle n, \sigma \rangle \Downarrow n \] for any \(\sigma, X \)
\[\langle n_0 + n_1, \sigma \rangle \Downarrow n_2 \] for any \(n_0, n_1, n_2, X \) where \(n_2 \) is sum of \(n_0, n_1 \)
\[\langle \text{skip}, \sigma \rangle \Downarrow \sigma \] for any \(\sigma, X \)
\[\langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \Downarrow \sigma' \] if
\[\langle b, \sigma \rangle \Downarrow \text{true} \text{ and } \langle c_0, \sigma \rangle \Downarrow \sigma' \] (for any ...)

As inference rules

\[\langle b, \sigma \rangle \Downarrow \text{true} \quad \langle c_0, \sigma \rangle \Downarrow \sigma' \]
\[\quad \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \Downarrow \sigma' \]
\[\langle n, \sigma \rangle \Downarrow n \] axiom

Execution as proof

- Legal executions = those that can be proved correct inductively
- Proof = proof tree where every step is application of an inference rule
- Execution = depth-first walk of proof tree
- Collection of inference rules: proof system

\[\begin{align*}
&x : \langle x \rightarrow 1 \rangle \\
&\text{if } x < y \text{ then } x := 0 \text{ else } \text{skip} \quad \Downarrow \quad \langle x \rightarrow 0, y \rightarrow 2 \rangle \quad \Downarrow \quad \langle x \rightarrow 0, y \rightarrow 2 \rangle
\end{align*} \]
Applying rules

- Inference rule represents a large (infinite) set of rule instances in which meta-variables are consistently substituted.

\[
\begin{align*}
\langle n, \sigma \rangle & \Downarrow n \quad \langle 0, \sigma \rangle & \Downarrow 0 \quad \langle 1, \sigma \rangle & \Downarrow 1 \\
\langle b, \sigma \rangle \Downarrow \text{true} & \quad \langle c_0, \sigma \rangle \Downarrow \sigma' \quad \langle 0=1, \sigma \rangle \Downarrow \text{true} & \quad \langle \text{skip}, \sigma \rangle \Downarrow \sigma \quad \langle \text{if } b \text{ then } c_0 \text{ else } c_1, \sigma \rangle \Downarrow \sigma' \quad \langle \text{if } 0=1 \text{ then skip else ...}, \sigma \rangle \Downarrow \sigma
\end{align*}
\]