1 Trouble with \texttt{while}

If we try to define $C[\texttt{while }b \texttt{ do } c]$ in the obvious manner, we get

$$C[\texttt{while }b \texttt{ do } c] \sigma = \begin{cases} \text{if } \neg B[b] \text{ then } \sigma \\ \text{else } C[\texttt{while }b \texttt{ do } c](C[c] \sigma) \end{cases}.$$

However, $C[\texttt{while }b \texttt{ do } c]$ appears on both sides—this is really an equation, not a definition\footnote{It’s important to point out here that our denotations will be defined by structural induction, so that it is okay in this case to assume that $B[b]$ and $C[c]$ are defined.}. Looking at this more generally, $C[\texttt{while }b \texttt{ do } c]$ is a solution to the equation

$$x = \Gamma(x)$$

where

$$\Gamma = \lambda f : \Sigma_\bot \rightarrow \Sigma_\bot. \lambda \sigma : \Sigma_\bot. \text{if } \neg B[b] \text{ then } \sigma \text{ else } f(C[c] \sigma).$$

What we would like to do is define $C[\texttt{while }b \texttt{ do } c] = \text{fix}(\Gamma)$

But which fixed point of Γ do we want? We would like to take the “least” fixed point, in the sense that we want $C[\texttt{while }b \texttt{ do } c]$ to give a non-\bot result only when required by the intended semantics. (For example, we want $C[\texttt{while }b \texttt{ do } \texttt{skip}] \sigma = \bot$ for all σ.) The rest of this lecture will expand on this notion of least fixed point, with a look at the underlying theory of partial orders.

Iterating Γ allows us to create a sequence of approximations for $C[\texttt{while }b \texttt{ do } c]$:

$$f_0 = \bot \text{ (more precisely, } \bot : \Sigma_\bot \rightarrow \Sigma_\bot)$$
$$f_1 = \Gamma(\bot)$$
$$= \lambda \sigma. \text{if } \neg B[b] \text{ then } \sigma \text{ else } \bot$$
$$f_2 = \Gamma(\Gamma(\bot))$$
$$= \lambda \sigma. \text{if } \neg B[b] \sigma \text{ then } \sigma \text{ else }$$
$$\text{if } \neg B[b] C[c] \sigma \text{ then } C[c] \sigma \text{ else } \bot$$
$$f_3 = \Gamma(\Gamma(\Gamma(\bot)))$$
$$= \lambda \sigma. \text{if } \neg B[b] \sigma \text{ then } \sigma \text{ else }$$
$$\text{if } \neg B[b] C[c] \sigma \text{ then } C[c] \sigma \text{ else }$$
$$\text{if } \neg B[b] C[c] C[c] \sigma \text{ then } C[c] C[c] \sigma \text{ else } \bot$$
$$\vdots$$
$$f_n = \Gamma^n(\bot)$$
$$\vdots$$

The “limit” of this sequence will be the denotation of $\texttt{while }b \texttt{ do } c$. To take this “limit”, we will consider the approximations as an increasing sequence $f_0 \leq f_1 \leq f_2 \leq \cdots$, and then take the least upper bound. We must first study partial orders to get the needed machinery.
2 Partial Orders

A partial order (also known as a partially ordered set or poset) is a pair \((S, \sqsubseteq)\), where

- \(S\) is a set of elements.
- \(\sqsubseteq\) is a relation on \(S\) which is:
 1. reflexive: \(x \sqsubseteq x\)
 2. transitive: \((x \sqsubseteq y \land y \sqsubseteq z) \Rightarrow x \sqsubseteq z\)
 3. anti-symmetric: \((x \sqsubseteq y \land y \sqsubseteq x) \Rightarrow x = y\)

Examples:

- \((\mathbb{Z}, \leq)\), where \(\mathbb{Z}\) is the integers and \(\leq\) is the usual ordering.
- \((\mathbb{Z}, =)\) (Note that unequal elements are incomparable in this order. Partial orders ordered by the identity relation, \(=\), are called discrete.)
- \((2^S, \subseteq)\) (Here, \(2^S\) denotes the powerset of \(S\), the set of all subsets of \(S\), often written \(\mathcal{P}(S)\), and in Winskel, \(\text{Pow}(S)\).)
- \((2^S, \supseteq)\)
- \((S, \supseteq)\), if we are given that \((S, \sqsubseteq)\) is a partial order.
- \((\omega, |)\), where \(\omega = \{0, 1, 2, \ldots\}\) and \(a | b \iff (a \text{ divides } b) \iff (b = ka \text{ for some } k \in \omega)\). Note that for any \(n \in \omega\), we have \(n|0\); we call 0 an upper bound for \(\omega\) (but only in this ordering, of course!).

Non-examples:

- \((\mathbb{Z}, <)\) is not a partial order, because \(<\) is not reflexive.
- \((\mathbb{Z}, \subseteq)\), where \(m \subseteq n \iff |m| \leq |n|\), is not a partial order because \(\subseteq\) is not anti-symmetric: \(-1 \subseteq 1\) and \(1 \subseteq -1\), but \(-1 \neq 1\).

The “partial” in partial order comes from the fact that our definition does not require these orders to be total; e.g., in the partial order \((2^{\{a,b\}}, \subseteq)\), the elements \(\{a\}\) and \(\{b\}\) are incomparable: neither \(\{a\} \subseteq \{b\}\) nor \(\{b\} \subseteq \{a\}\) hold.

Hasse diagrams Partial orders can be described pictorially using Hasse diagrams\(^2\). In a Hasse diagram, each element of the partial order is displayed as a (possibly labeled) point, and lines are drawn between these points, according to these rules:

1. If \(x\) and \(y\) are elements of the partial order, and \(x \sqsubseteq y\), then the point corresponding to \(x\) is drawn lower in the diagram than the point corresponding to \(y\).
2. A line is drawn between the points representing two elements \(x\) and \(y\) iff \(x \sqsubseteq y\) and \(\neg \exists z\) in the partial order, distinct from \(x\) and \(y\), such that \(x \sqsubseteq z\) and \(z \sqsubseteq y\) (i.e., the ordering relation between \(x\) and \(y\) is not due to transitivity).

An example of a Hasse diagram for the partial order on the set \(2^{\{a,b,c\}}\) using \(\subseteq\) as the binary relation is:

\(^2\)Named after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the Hasse (or “local-global”) principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Göttingen.
Least upper bounds

Given a partial order \((S, \sqsubseteq)\), and a subset \(B \subseteq S\), \(y\) is an upper bound of \(B\) iff \(\forall x \in B. x \sqsubseteq y\). In addition, \(y\) is a least upper bound iff \(y\) is an upper bound and \(y \sqsubseteq z\) for all upper bounds \(z\) of \(B\). We may abbreviate “least upper bound” as LUB or lub. We shall notate the LUB of a subset \(B\) as \(\bigsqcup B\). We may also make this an infix operator, as in \(\bigsqcup \{x_0, x_1, \ldots, x_m\} = x_1 \sqcup \ldots \sqcup x_m\).

Chains

A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements \(x_0, x_1, x_2\ldots\) such that \(x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots\)). For any finite chain, its LUB is its last element (e.g., \(\bigsqcup \{x_0, x_1, \ldots, x_n\} = x_n\)). Infinite chains (Winskel: \(\omega\)-chains) may also have LUBs.

Complete partial orders

A complete partial order (cpo or CPO) is a partial order in which every chain has a LUB. Note that the requirement for every chain is trivial for finite chains (and thus finite partial orders) – it is the infinite chains that can cause trouble.

Some examples of cpos:

- \((2^S, \subseteq)\) Here \(S\) itself is the LUB for the chain of all elements.
- \((\omega \cup \{\infty\}, \leq)\) Here \(\infty\) is the LUB for any infinite chain: \(\forall w \in \omega. w \leq \infty\).
- \(((0, 1], \leq)\) where \([0, 1]\) is the closed continuum, and 1 is a LUB for infinite chains. Note that making the continuum open at the top – \((0, 1)\) – would cause this to no longer be a cpo, since there would be no LUB for infinite chains such as \(\frac{1}{2}, \frac{3}{4}, \frac{5}{8}, \ldots\).
- \((S, =)\) This is a discrete cpo, just as it is a discrete partial order. The only infinite chains are of the sort \(x_i \sqsubseteq x_i \sqsubseteq x_i \ldots\), of which \(x_i\) is itself a LUB.

Even if \((S, \sqsubseteq)\) is a cpo, \((S, \sqsubseteq)\) is not necessarily a cpo. Consider \(((0, 1], \leq)\), which is a cpo. Reversing its binary relation yields \(((0, 1], \geq)\) which is not a cpo, just as \(((0, 1], \leq)\) above was not.

CPOs can also have a least element, written \(\bot\), such that \(\forall x. \bot \sqsubseteq x\). We call a cpo with such an element a pointed cpo. Winskel instead uses cpo with bottom.

3 Least fixed points of functions

Recall that at the end of the last lecture we were attempting to define the least fixed point operator \(\text{fix}\) over the domain \((\Sigma_\bot \rightarrow \Sigma_\bot)\) so that we could determine calculate fixed points of \(\Gamma : (\Sigma_\bot \rightarrow \Sigma_\bot) \rightarrow (\Sigma_\bot \rightarrow \Sigma_\bot)\). It was unclear, however, what the “least” fixed point of this domain would be – how is one function from states to states “less” than another? We’ve now developed the theory to answer that question.

We define the ordering of states by information content: \(\sigma \sqsubseteq \sigma’\) iff \(\sigma\) gives less (or at most as much) information than \(\sigma’\). Non-termination is defined to provide less information than any other state: \(\forall \sigma \in \Sigma_\bot. \bot \sqsubseteq \sigma\). In addition, we have that \(\sigma \sqsubseteq \sigma\). No other pairs of states are defined to be comparable. The lifted set of possible states \(\Sigma_\bot\) can now be characterized as a flat pointed cpo (also, in other sources: flat cpo, discrete cpo with bottom):

- Its elements are elements of \(\Sigma \cup \{\bot\}\).
- The ordering relation \(\sqsubseteq\) satisfies the reflexive, transitive, and anti-symmetric properties.
• There are three types of infinite chains, each with a LUB:

 1. $\bot \sqsubseteq \bot \sqsubseteq \ldots$, LUB $= \bot$
 2. $\sigma \sqsubseteq \sigma \sqsubseteq \ldots$, LUB $= \sigma$
 3. $\bot \sqsubseteq \bot \sqsubseteq \ldots \sqsubseteq \sigma \sqsubseteq \sigma \sqsubseteq \ldots$, LUB $= \sigma$

We are at least ready to define an ordering relation on functions. Functions will be ordered using a pointwise ordering on their results. Given a cpo E, a domain D, $f \in D \to E$, and $g \in D \to E$:

$$f \sqsubseteq_D E g \iff \forall x \in D. f(x) \subseteq_E g(x)$$

Note that we are defining a new cpo over $D \to E$, and that this cpo is pointed if E is pointed, since $\bot_D E = \lambda x \in D. \bot_E$.

As an example, consider two functions $\mathbb{Z} \to \mathbb{Z}_\perp$:

$$f = \lambda x \in \mathbb{Z}. \text{if } x = 0 \text{ then } \bot \text{ else } x$$
$$g = \lambda x \in \mathbb{Z}. x$$

We conclude $f \sqsubseteq g$ because $f(x) \subseteq g(x)$ for all x; in particular, $f(0) = \bot \sqsubseteq 1 = g(0)$.

4 Back to while

It’s now time to unify our dual understanding of the denotation of while as both a limit and a fixed point.

We previously defined the denotation of while as both:

$$\mathcal{C}[\text{while } b \text{ do } c] = \text{fix}(\Gamma) = \lim \Gamma^n(\bot)$$

However, we did not know how to define the fix operator over the range of Γ, nor did we have a definition for the least fixed point of Γ to take as its limit. CPOs have given us the machinery to handle these definitions now.

We assert that:

$$\mathcal{C}[\text{while } b \text{ do } c] = \bigsqcup_{n \in \omega} \Gamma^n(\bot)$$

As an example to give us confidence that this is the correct definition, we see that:

$$\mathcal{C}[\text{while true do skip}] = \bigsqcup_{n \in \omega} \Gamma^n(\bot) = \bot_{\Sigma_\perp \to \Sigma_\bot} = \lambda \sigma \in \Sigma_\bot. \bot$$

As we begin to construct a proof that this denotation is correct, we want to show that this limit, or LUB, is a least fixed point of Γ. That is, we want to show that

$$\bigsqcup_{n \in \omega} \Gamma^n(\bot)$$

is the least solution to
\[x = \Gamma(x) \]

This will not be true for arbitrary \(\Gamma \)! We need \(\Gamma \) to be both monotonic and continuous. Consider a non-monotonic \(\Gamma \):

\[
\Gamma(x) = \begin{cases}
1 & \text{if } x = \bot \\
\bot & \text{if } x = 1 \\
0 & \text{if } x = 0
\end{cases}
\]

Although 0 is clearly a fixed point of this \(\Gamma \), \(\Gamma^n(\bot) \) is not a chain (the elements cycle between \(\bot \) and 1), and so we cannot take the LUB of it. Thus we need monotonicity.

Even monotonicity is not enough. Consider a monotonic but non-continuous \(\Gamma \) defined over the complete partial order \((\mathbb{R} \cup \{-\infty, \infty\}, \leq) \):

\[
\Gamma(x) = \begin{cases}
\tan^{-1}(x) & \text{if } x < 0 \\
1 & \text{else}
\end{cases}
\]

The least fixed point of this \(\Gamma \) is 1. However,

\[
\Gamma^1(\bot) = \tan^{-1}(-\infty) = -\frac{\pi}{2} \\
\Gamma^2(\bot) = \tan^{-1}\left(-\frac{\pi}{2}\right) = \ldots
\]

and \(\Gamma^n(\bot) \) approaches 0, so its LUB is 0. But \(\Gamma(0) = 1 \), so the LUB is not a fixed point! The least fixed point of this monotonic function is actually 1 = \(\Gamma(1) \). We need some form of continuity in \(\Gamma \) for \(\text{fix} \) to yield a fixed point.

We continue toward our goal of proving the denotation of \textbf{while} correct in the next lecture.