1 Lambda calculus

a. Define an applicative-order operational semantics for the lambda calculus that during evaluation never produces an intermediate expression with holes in scope, assuming that none exist in the original expression to be evaluated.

b. An equivalence relation has the properties of reflexivity \((a \equiv a)\), symmetry \((a \equiv b \iff b \equiv a)\) and transitivity \((a \equiv b \land b \equiv c \Rightarrow a \equiv c)\). Show that alpha-equivalence is an equivalence relation on lambda calculus expressions.

2 Fixed Points

Consider the expression

\[
F = \lambda f : Z_\bot \rightarrow Z_\bot . \lambda x : Z_\bot . \text{if } (x < 2) \text{ then } 1 \text{ else } x * f(x - 1)
\]

We can define the factorial function as

\[
\text{FACT} \overset{\text{def}}{=} \text{fix}(F)
\]

a. Expand \(F^2(\bot)\) and \(F^3(\bot)\) into normal form for some reasonable definition of normal form.

b. For what argument values \(x\) do these two functions compute factorial properly?

c. Prove inductively the set of argument values \(x\) for which the function \(F^n(\bot)\) computes factorial correctly.

3 Continuity

a. Winskel, exercise 4.14

b. Winskel, exercise 5.12 (i)

c. Winskel, exercise 8.6

4 Domain theory

a. Winskel, exercise 8.12. Show that these truth tables define continuous functions.

b. Show that the in and cases functions associated with sum domains are continuous without relying on the desugaring of cases given on page 135 of Winskel.

c. Provide the missing step in the proof given in class that the fix operator is continuous. Assuming that the fix operator has type \((D \rightarrow D) \rightarrow D\), show that

\[
\text{fix} = \lambda f : D \rightarrow D . \bigsqcup_{n \in \omega} f^n(\bot) = \bigsqcup_{n \in \omega} \lambda f : D \rightarrow D . f^n(\bot)
\]

d. Consider the function

\[
\text{strict} : D_\bot \times (D \rightarrow D_\bot) \rightarrow D_\bot \overset{\text{def}}{=} \lambda v : D_\bot, f : D \rightarrow D_\bot . \text{if } v = \bot \text{ then } \bot \text{ else } f(v)
\]

We can use this function to construct denotational semantics if it is continuous.
(i) Assuming that D is a cpo, show that strict is continuous.

(ii) Use strict with $D = \mathbb{Z}$ to simplify the denotational semantics for a function call expression in call-by-value REC^+.

e. Consider the function

$$
\text{minall} : (\omega \to \omega) \to \omega = \lambda f : \omega \to \omega. \min_{y \in \omega} f(y)
$$

In this definition, ω denotes the whole numbers $\{0, 1, 2, \ldots\}$, and the function min gives the smallest number in all of the $f(y)$, or \bot if $f(y) = \bot$ for some integer y. Show that this function is monotonic but not continuous.

5 Parameter Passing

a. Give a single REC^+ program that has a different meaning in each of call-by-name, call-by-value, and call-by-denotation.

b. Why can’t we write an expression that can be tested at run time to determine which of the parameter passing styles the language is using?

6 Naming

Suppose we add modules to the F_0 language, with the the following new expression forms. The resulting language we will call F_m:

$$
e ::= \ldots \quad (\text{Same as } F_0)
| \text{(module } (x_1 e_1) \ldots (x_n e_n)\text{)} \quad (\text{Create a module})
| \text{(select } e' x\text{)} \quad (\text{Look up } x \text{ in } e')
| \text{(with } e_1 e_2\text{)} \quad (\text{Evaluate } e_2 \text{ in extended environment})
| \text{(extend } e_1 e_2\text{)} \quad (\text{Extend one environment with another})
$$

The module expression creates a new module that binds each of the identifiers x_i to the result of the corresponding expression e_i. The select expression takes a module as its first argument and looks up the value bound to the identifier x_0. The with expression evaluates the expression e_2 in an environment in which all of the identifiers bound by the module in e_1 are bound accordingly.

In this problem we will extend the denotational semantics for F_0 to describe these new constructs. Values of type module will be considered to be environment extenders: members of the domain $\text{Env} \to \text{Env}$, which extend a given environment with a set of possibly new bindings. We could also define modules as members of the domain Env, but that is not the approach we will take here.

a. Make all changes to the domain equations of F_0 necessary to support the addition of module values.

b. Define the semantic function $\mathcal{C}[e]$ for the four new F_m expressions. Does its definition need to change for any F_0 expressions?

7 State

The $F!$ language defined in class adds the notion of a store that binds locations to values. There are many imperative structures that we did not add to this language. In this problem we will define the operational and denotational semantics for the $F!$ language extended with support for mutable arrays of fixed size. We will allow four new syntactic forms in this language $F!_a$:

$$
e ::= \ldots \quad (\text{Same as } F!)
| \text{(array } e_1 e_2\text{)} \quad (\text{Create an array of } e_1 \text{ elements})
| \text{(get } e_a e_i\text{)} \quad (\text{Get the } i\text{th element of the array } e_a)
| \text{(set } e_a e_i e_v\text{)} \quad (\text{Set the } i\text{th element of the array } e_a)
| \text{(length } e_a\text{)} \quad (\text{Get the length of the array } e_a)
$$

2
The result of the array expression is a new array value all of whose elements are bound to the result of evaluating e_v. The result of the set expression is the result of evaluating e_v. The store is also updated to reflect the update to the array.

a. Assuming array values are members of the domain $Z \times (Z \rightarrow Loc + IndexError)$, where IndexError is the result produced by an out-of-bounds array index, what other changes need to be made to the domain equations for $F!$?

b. Define the semantic function $C[e]$ for the four new kinds of expressions.

c. Now consider adding the following expression to the language:

$$
e \ ::= \ldots \quad \text{(Same as } F!_a \text{)}
| \quad \text{resize } e_a e_n e_v \quad \text{(Resize array)}
$$

This expression changes the length of the array e_a to be $\max(e_n, 0)$. If any new array cells are created, they are filled in with the result of evaluating e_v.

How can the domain equations be changed to allow this new kind of expression?