Decision Theory I
Problem Set 1

1. Show that if \succ is negatively transitive and asymmetric then \succ is transitive.

2. Suppose that \succ is a partial, asymmetric and transitive relation on a finite set X. Let $c(\cdot, \succ)$ be the choice function induced by \succ. Does this choice function necessarily satisfy Sen’s β?

3. Suppose $X = \{x, y, z\}$. Consider a choice function $C : P(X) \rightarrow P(X)$ such that $C(\{x, y\}) = \{x\}$, $C(\{x, z\}) = \{z\}$ and $C(\{y, z\}) = \{y\}$. Does this choice function satisfy Sen’s α and β?

4. The set of alternatives is $X = \{a, b, c\}$ and \succ is a binary order on X reflecting strict preference. Suppose that for $x \in \{b, c\}$, $x \not\succ a$ and $a \not\succ x$. Suppose also that $b \succ c$. Can this relation be a strict preference relation? Explain.

 If we want to include the possibility that there is an alternative a that is not comparable to either b or c in our analysis then we would want the condition above on a to be satisfied. What does this example say about non-comparability?

5. Let \succ be a binary relation on a finite set X. Define \succeq by: $x \succeq y$ if $y \not\succ x$. Show

 (a) If \succeq is complete then \succ is asymmetric.

 (b) If \succeq is transitive then \succ is negatively transitive.

6. **GRAD**: A binary relation that is reflexive, symmetric and transitive is called an equivalence relation. An equivalence relation partitions a set into equivalence classes. Suppose that \succ is a strict preference relation on a finite set X. Then by Proposition 2.4 of Kreps we know that \sim is an equivalence relation on X. For each $x \in X$ define its equivalence class by $I(x) = \{y \in X| y \sim x\}$. Show:

 (a) The sets $I(x)$ partition X. (A collection of sets $\{A_1, \ldots, A_N\}$ partitions X if each $x \in X$ is in at least one A_i and $A_i \cap A_j = \emptyset$ for all $i \neq j$.)
(b) The sets $I(x)$ are strictly ranked. (The equivalence classes are strictly ranked if, for all $x, y \in X$: (1) if $I(x) \neq I(y)$, then either $x \succ y$ or $y \succ x$, and (2) if $x \succ y$ then $x' \succ y'$ for all $x' \in I(x)$ and $y' \in I(y)$.)

7. **GRAD:** In the statement of Sen’s α and β we allow the sets A and B to be any subsets of X. So when we proved that these axioms imply that the revealed preference relation is asymmetric and negatively transitive we allowed ourselves to use information about choices from arbitrary subsets of X. We want to know whether there is a smaller class of subsets of X such that the claim in the revealed preference theorem is true if α and β are satisfied on this smaller class of sets. More precisely, find the smallest set S of non-trivial (not just single element sets), non-empty subsets of X such that the following claim is true: If a choice function satisfies Sen’s α and β on S then there is a preference order \succ defined on X such that $c(A, \succ) = c(A)$ for all $A \in S$.

8. **GRAD:** In class in the proof of the revealed preference theorem we defined strict revealed preference. Weak revealed preference is defined as follows: $x \succeq y$ if $x \in C(\{x, y\})$. Define induced strict revealed preference \succ^* from revealed preference \succeq by: $x \succ^* y$ if $x \succeq y$ and $y \not\succeq x$. Are strict revealed preference and induced strict revealed preference the same relation?