CS 5150 Software Engineering

Steps in the Software Development Process

William Y. Arms
Software Process

Fundamental Assumption:

Good processes lead to **good software**

Good processes reduce **risk**

Good processes enhance **visibility**

Good processes enable **teamwork**
Variety of Software Processes

Software products are very varied...

Therefore, there is no standard process for all software engineering projects

BUT successful software development projects all need to address similar issues.

This creates a number of process steps that should be part of all software projects.
Basic Process Steps in all Software Development

- **Feasibility** and planning
- **Requirements**
- System and program **design**
- **Implementation**
- **Acceptance** and release

- Operation and **maintenance**

It is essential to distinguish among these process steps and to be clear which you are doing at any given moment.

Note

- Considerations of **testing, security** and **performance** are part of many of these steps.
Quality Control Steps in all Software Development

- Validating the requirements
- Validating the system and program design
- Usability testing
- Program testing
- Acceptance testing
- Bug fixing and maintenance

Some of these steps will be repeated many times during the life of the system
Categories of Testing

The term “testing” is used in several different contexts, which are easily confused:

User testing

Versions of the user interface are tested by users. Their experience may lead to changes in the requirements or the design.

Program testing

The development team tests components individually (unit testing) or in combination (system testing) against the design to find bugs, etc.

Acceptance testing

The client tests the final version of the system or parts of the system against the requirements.
A **feasibility study** precedes the decision to begin a project.

- What is the scope of the proposed project?
- Is the project technically feasible?
- What are the projected benefits?
- What are the costs, timetable?
- Are the resources available?
- What are the risks and how can they be managed?

A feasibility study leads to a **decision**: go or no-go.
Requirements define the function of the system from the client's viewpoint.

The requirements establish the system's functionality, constraints, and goals by consultation with the client, customers, and users.

They must be developed in a manner that is understandable by both the client and the development staff.

This step is sometimes divided into:

- Requirements analysis
- Requirements definition
- Requirements specification

The requirements may be developed in a self-contained study, or may emerge incrementally.

Failure to agree on the requirements and define them adequately is one of the biggest cause of software projects failing.
Design describes the system from the software developers' viewpoint

System design:
Establish a system architecture, both hardware and software, that matches the requirements

Program design:
Represent the software functions in a form that can be transformed into one or more executable programs

Preliminary user testing is often carried out as part of the design step.

Models are used to represent the requirements, system architecture, and program design. This course teaches the basic concepts of the Unified Modeling Language (UML).
Process Step: Implementation

Implementation (coding)

The software design is realized as a set of programs or program units.

These software components may be written by the development team, acquired from elsewhere, or modified from existing components.

Program testing

Program testing by the development staff is an integral part of implementation.

Individual components are tested against the design.

The components are integrated and tested against the design as a complete system.
Process Step: Acceptance and Release

Acceptance testing

The system is tested against the requirements by the client, often with selected customers and users.

Delivery and release

After successful acceptance testing, the system is delivered to the client and released into production or marketed to customers.
Process Step: Operation and Maintenance

Operation:

The system is put into practical use.

Maintenance:

Errors and problems are identified and fixed.

Evolution:

The system evolves over time as requirements change, to add new functions, or adapt to a changing technical environment.

Phase out:

The system is withdrawn from service.

This is sometimes called the **Software Life Cycle**
Every software project will include these basic processes, in some shape or form, but:

- The steps may be formal or informal
- The steps may be carried out in various sequences
Sequence of Processes

Major alternatives

In this course, we will look at three categories of software development processes:

- **Sequential:**

 As far as possible, complete each process step before beginning the next. *Waterfall model.*

- **Iterative:**

 Go quickly through all process steps to create a rough system, then repeat them to improve the system. *Iterative refinement.*

- **Incremental:**

 An variant of iterative refinement in which small increments of software are placed in production (sprints). *Agile development.*
In a **heavyweight process**, the development team works through the process steps slowly and systematically, with the aim of fully completing each process step and delivering a complete software product that will need minimal changes and revision.

Example: *Modified Waterfall Model*

In a **lightweight process**, the development team releases working software in small increments, and develops the plans incrementally, based on experience. Each increment includes all the process steps. There is an expectation that changes will be made based on experience.

Example: *Agile Software Development*
Heavyweight and Lightweight Methodologies

<table>
<thead>
<tr>
<th>Heavyweight</th>
<th>Lighterweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processes and tools</td>
<td>Individuals & interactions</td>
</tr>
<tr>
<td>Specification</td>
<td>Working software</td>
</tr>
<tr>
<td>Client negotiation</td>
<td>Client collaboration</td>
</tr>
<tr>
<td>Following a plan</td>
<td>Responding to change</td>
</tr>
</tbody>
</table>

Based on the Manifesto for Agile Software Development: http://agilemanifesto.org/
Deliverables

A deliverable is some work product that is delivered to the client.

- In a **heavyweight process**, each process step creates a deliverable, usually documentation, e.g., a requirements specification.
- In a **lightweight process**, the deliverables are incremental working code, with minimal supporting documentation.

For the course projects, the deliverables include three presentations and a report to the client and course team at each major milestone.
An online information system is being developed using a modified version of the Waterfall model. It is likely to be based on Web technology.

(i) How much should the choice of technology be considered during the feasibility study?

(ii) In how much detail should the choice of technology be specified during the requirements phase of the project?

(iii) At what stage should the decision be made to use an Apache Web Server 2.0 with Tomcat 4.1?
(i) How much should the choice of technology be considered during the feasibility study?

During the feasibility study it is important to know that the project is **technically feasible**.

This can be achieved by identifying one **possible** technical approach and analyzing it sufficiently to show that it is capable of fulfilling the requirements of the system. It can also be used to estimate costs of hardware, software, etc.

However, this is only a possible approach. When the system design is carried out in detail, totally different technology may be chosen (e.g., not web-based).
(ii) In how much detail should the choice of technology be specified during the requirements phase of the project?

A requirement is a statement of need as expressed by a client.

The client's requirements are that the system collects certain data, saves it, and carries out specified processes, e.g., displaying it, performing calculations, etc.

The decision of how to store and manipulate the data (e.g., using specific web technology) is usually not a requirement of the client. It comes later, as part of the design.
(iii) At what stage should the decision be made to use an Apache Web Server 2.0 with Tomcat 4.1?

This is part of the System Design.