Problem Set 7

Due Date: Thurs, March 13, 2003

Reading

Please read the handout on second order propositional logic (on either the 2001 or 2003 CS486 web site); Smullyan, Chapter IV, p. 43-52; and Suppes’ Introduction to Logic, pages 43-54.

Problems

2. Prove or disprove these P^2 formulas:

 (a) $\forall p \forall q ((p \supset q) \supset ((p \supset \bot) \supset (q \supset \bot)))$
 (b) $\forall p \exists q ((p \supset q) \supset ((p \supset \bot) \supset (q \supset \bot)))$
 (c) $(\forall p(\sim p)) \supset \sim \exists p.p$
 (d) $\forall p \exists q ((p \lor q) \supset p)$
 (e) $\forall p \exists q ((p \lor q) \land \sim (p \land q))$

3. Reduce these P^2 formulas to P^0 formulas.

 (a) $\forall p(p) \supset \bot$
 (b) $\forall p \forall q ((\sim p \lor q) \supset (p \supset q))$
 (c) $\forall p \forall q ((p \supset p \lor q) \land (p \land q \supset p))$

5. Solve exercise 3, page 52 of Smullyan.

7. There is a simple proof for cut elimination in P^2. State the theorem and outline a proof. Details are not necessary.

Optional Problem:

Develop the idea that Refinement Logic is a calculus of “problems.” Try to define the idea of a problem P and a solution for it, say s. Use a semantics based on the idea that s solves P.

1