Problem Set 5

Due Date: Thurs, Feb 27

Reading

Please study Smullyan, Chapter XI, p. 101-108, and skim Chapter IV, p. 43-51 for Thurs, Feb 27.

Problems

1. Give a top-down Gentzen proof of formulas (2), (4), (6), and (8) on page 24.

2. Recall the lecture presentation of Smullyan’s definition of a tree. A tree is a 4-tuple \(< s, a, p, f > \) where \(S \) is a set of nodes, \(a \in S \), \(p \) maps \(\{ x : \) \(S | x \neq a \} \) into \(S \); it computes the predecessor of a node, the function \(f \) maps \(S \) to \(\mathbb{N}^+ = \{1, 2, 3, \ldots \} \). The two axioms are:
 - Ax 1. For all \(x \) in \(S \), \(f(x) = 1 \) iff \(x = a \).
 - Ax 2. For all \(x \) in \(S \), \(f(x) = f(p(x)) + 1 \).

 Define \(L(i) = \{ x : S | f(x) = i \} \).

 Prove carefully that \(L(i + 1) = \{ x : S | p(x) \in L(i) \} \) and describe the result graphically.

3. Recall that Refinement Logic is a single conclusion (top down) Gentzen system in which the rule \(\frac{H \vdash P \land Q}{H \vdash P, Q} \) is replaced by \(\frac{H \vdash P \lor Q}{H \vdash P} \) or \(\frac{H \vdash P \lor Q}{H \vdash Q} \) and the rule \(\frac{H, X \vdash \sim P}{H, X \vdash \sim \sim P} \) for any formula \(x \).

 Prove the following formulas in Refinement Logic:
 (a) \((P \supset Q) \supset P \)
 (b) \((P \supset Q) \supset \sim Q \supset \sim P \)
 (c) \(\sim Q \supset (P \supset Q) \)
 (d) \(\sim (P \lor Q) \supset \sim P \lor \sim \sim Q \)

4. Write down the rules for a Gentzen system based on the Sheffer stroke and one based on joint denial (see p. 14 of Smullyan and p.30).

5. Produce Tableau rules and Refinement rules for a logic with the constants \(t, f \) (Smullyan, p. 13), but without \(\sim \). Define \(\sim P \) as \(P \supset f \) and show how to replace any deduction using the \(\sim \) rules by one using \(P \supset f \) instead.