Main Steps

The 5 main steps for a greedy stays ahead proof are as follows:

Step 1: **Define your solutions.** Tell us what form your greedy solution takes, and what form some other solution takes (possibly the optimal solution). For example, let \(A \) be the solution constructed by the greedy algorithm, and let \(O \) be a (possibly optimal) solution.

Step 2: **Find a measure.** Find a measure by which greedy stays ahead of the other solution you chose to compare with. Let \(a_1, \ldots, a_k \) be the first \(k \) measures of the greedy algorithm, and let \(o_1, \ldots, o_m \) be the first \(m \) measures of the other solution (\(m = k \) sometimes).

Step 3: **Prove greedy stays ahead.** Show that the partial solutions constructed by greedy are always just as good as the initial segments of your other solution, based on the measure you selected.

- for all indices \(r \leq k \), prove by induction that \(f(a_1, \ldots, a_r) (\geq, \leq) f(o_1, \ldots, o_r) \), where \(f \) is some function on the 1st \(r \) measures. Don’t forget to use your algorithm to help you argue the inductive step.

Step 4: **Prove optimality.** Prove that since greedy stays ahead of the other solution with respect to the measure you selected, then it is optimal.

Comments

- The tricky part is finding the right measure; greedy won’t necessarily stay ahead in just any measure.

- Make sure your measure guarantees greedy is optimal, i.e. if greedy stays ahead with respect to this measure, how does it guarantee your greedy solution is optimal?
Example: Interval Scheduling

Suppose you have a set of \(n \) requests \(\{1, 2, \ldots, n\} \), each with a desired start and finish time pair \((s_i, f_i)\). We determine a schedule with the maximum number of non-overlapping (compatible) requests by repeatedly selecting the remaining request with the earliest finish time, and removing all conflicting requests from the set. We will prove this returns an optimal solution.

Let \(A = \{i_1, \ldots, i_k\} \) be the set of requests selected by our greedy algorithm, in the order in which they were added. Let \(O = \{j_1, \ldots, j_m\} \) be the requests selected by an optimal solution, ordered by their finish times.

We will compare \(A \) and \(O \) by their jobs’ finish times, i.e. we will show that for all \(r \leq k \), \(f_{i_r} \leq f_{j_r} \).

This can be shown by induction. As the base case, we take \(r = 1 \). Since we selected the job with the earliest finish time, it certainly must be the case that \(f_{i_1} \leq f_{j_1} \).

For \(t > 1 \), assume the statement is true for \(t - 1 \) and we will prove it for \(t \). The induction hypothesis states that \(f_{i_{t-1}} \leq f_{j_{t-1}} \), and so any jobs that are valid to add to the optimal solution are certainly valid to add to our greedy solution. Therefore, it must be the case that \(f_{i_t} \leq f_{j_t} \).

So we have that for all \(r \leq k \), \(f_{i_r} \leq f_{j_r} \). In particular, \(f_{i_k} \leq f_{j_k} \). If \(A \) is not optimal, then it must be the case that \(m > k \), and so there is a job \(f_{j_{k+1}} \) in \(O \) that is not in \(A \). This job must start after \(O \)'s \(k^{th} \) job finishes at \(f_{j_k} \), and hence after \(f_{i_k} \). But then this job would have been compatible with all the jobs in \(A \), and so \(A \) would have added it during the greedy algorithm, a contradiction.