1. Which of the following sets is (are) regular? Justify your answers briefly.

(a) \{ 0^i^2 \mid i \geq 0 \}
(b) \{ 0^i^2 \mid i \geq 0 \}^*
(c) \{ 0^i 1^j \mid i \equiv j \pmod{11} \}^*
(d) \{ w/x \mid w, x \in \{0, 1\}^* \land (∃0(w) = ∃1(x)) \}
(e) \{ 0^i w 1^j \mid w \in \{0, 1\}^* \land i \geq 0 \}
(f) \{ wx \mid w, x \in \{0, 1\}^* \land (∃0(w) = ∃1(x)) \}
(g) the set of all syntactically correct Java programs
(h) the text of question 1 of this prelim
(i) \(L_{A,S} = \{ x \mid (∃y \in A) xy \in S \} \)

For part (i), assume \(A \subseteq \{0, 1\}^* \) is an arbitrary regular set and \(S \subseteq \{0, 1\}^* \) is an arbitrary (not necessarily regular) set. If the given set is necessarily regular for all \(A \) and \(S \), give a convincing argument that this is true. Otherwise, give a counterexample.

Answer a Not regular. The set \(\{ i^2 \mid i \geq 0 \} \) is not ultimately periodic.

Answer b Regular. The set \(A = \{ 0^i^2 \mid i \geq 0 \} \) contains \(0^0 = \epsilon \) and \(0^1 = 0 \); consequently \(A^* = \{0\}^* \), which is regular.

Answer c Regular. Rewrite as \(\{ 0^i 1^j \mid (i \pmod{1})1 = (j \pmod{1})1 \} \), and observe that there are only 11 distinct values for \((i \pmod{1})1 \), and these can be remembered in the state of a FA.

Answer d Not regular, proved in lecture by inverse homomorphism.
(answer e) Regular. The language includes \(\{0^w1^0 \mid w \in \Sigma^* \} \) which is all of \(\Sigma^* \).

(answer f) Regular. This one is tricky. Claim any \(z \in \Sigma^* \) can be written in this form, by strong induction on \(|z| \). The basis is trivial. For the inductive step, there are two cases: \(z = z'0 \) or \(z = z'1 \). In the first case, use the i.h. to write \(z' = wx \) where \(\sharp 0(w) = \sharp 1(x) \), and observe that \(z = w(x0) \) has the required property. In the second case, if \(z' \) consists entirely of 1's the result is immediate. So write \(z' = y0z'' \) where \(y \) consists entirely of 1's. Use the i.h. to write \(z'' = wx \) and observe that \(z = (y0w)(x1) \) has the required property.

(answer g) Not regular. For example, use a homomorphism to map this to \(\{0^i1^i \} \).

(answer h) Regular. It may not seem so, but this question is finite.

(answer i) Not regular. Let \(A = \{\epsilon\} \) and let \(S \) be any non-regular set.

2. In the introduction to this course we argued that we could always model function evaluation by language recognition, representing a function by the language of its argument-result pairs. Here we examine this claim more critically. Let \(\Sigma = \{0, 1\} \), and let \(f \) be a function from \(\Sigma^* \) to \(\Sigma^* \).

A language \(L \subseteq (\Sigma \cup \{\$\})^* \) is said to represent \(f \) by pairs if

\[
L = \{x\$y \mid x, y \in \Sigma^* \land y = f(x) \}
\]

A language \(L \subseteq \Gamma^* \) is said to represent \(f \) by homomorphisms if there exist homomorphisms \(g \) and \(h \) from \(\Gamma^* \) to \(\Sigma^* \) such that

\[
y = f(x) \quad \text{iff} \quad (\exists z \in L)((x = g(z)) \land (y = h(z)))
\]

Now, let \(P_p(f) \) be the proposition “there is some regular language \(A \) that represents \(f \) by pairs,” and let \(P_h(f) \) be the proposition “there is some regular language \(B \) that represents \(f \) by homomorphisms,'

(a) Does \(P_p(f) \) imply \(P_h(f) \)?
(answer a) Yes. Use the inverse of the homomorphism

\[u(0) = u(a) = 0 \quad u(1) = u(b) = 1 \quad u(\$) = \$ \]

then intersect with \(L((0+1)^*\$(a+b)^*) \). The resulting language is clearly regular, and by using

\[g(0) = 0 \quad g(1) = 1 \quad g(a) = g(b) = g(\$) = \epsilon \]
\[h(a) = 0 \quad h(b) = 1 \quad h(0) = h(a) = h(\$) = \epsilon \]

clearly represents \(f \) by homomorphism.

(b) Does \(P_h(f) \) imply \(P_p(f) \)?

(\textbf{answer b}) No. The identity function \(f(x) = x \) is a counterexample. Clearly \(\Sigma^* \) represents the identity function using

\[g(0) = h(0) = 0 \quad g(1) = h(1) = 1 \]

But the (only) language representing the identity function by pairs is \(\{ w\$w \mid w \in \Sigma^* \} \), which is not regular.

3. Consider the following languages of balanced parentheses:

\(L() \) is the set of strings of balanced parentheses nested arbitrarily deeply – for example,

\[() (()) ()(())((())()) ((((()))))()) \ldots \]

are all strings in \(L() \).

\(L_k() \) is the set of strings of balanced parentheses nested no more than \(k \) deep. For example, the string \((())() \) is in \(L_3() \) but not \(L_2() \).

\(L()[] \) is the set of strings of balanced parentheses of two different types, \((\) and \(] \). We require different kinds of parentheses to be properly matched, so for example the string \(([()()])[] \) is in \(L()[] \), but the string \([(()())] \) is not.

\(L_{j,k}()[] \) is the set of strings of balanced parentheses of two types, with the nesting of \((\) limited to \(j \), and the nesting of \(] \) limited to \(k \). The nesting depth is counted separately for the two kinds of parentheses, so for example the string \([[(()())]] \) is in \(L_{2,3}()[] \).

Believe it or not, this is mostly a Myhill-Nerode question.
(a) Describe the equivalence classes of the relations

\[\equiv_{L^0}, \quad \equiv_{\{ 0 \}}, \quad \equiv_{L^k}, \quad \equiv_{\{ 0 \}^k} \]

Do this informally, but in enough detail to enable a reader to decide whether
\[[x]_\equiv = [y]_\equiv \] for arbitrary strings \(x \) and \(y \).

(\textbf{answer a}) For any language \(L \), the equivalence classes of \(\equiv_L \) are sets of
strings that behave equivalently under extension; i.e.,

\[x \equiv_L y \iff (\forall z)(xz \in L \iff yz \in L) \]

For our parenthesis languages, a string \(xz \) is in \(L \) iff \(z \) “closes” all the open – that is, unmatched – (and [characters in \(x \). So you can think of \(z \) as the string in
\(('\) \text{'} + [')]* \) that matches all the unmatched left bracket symbols of \(x \). Any \(y \) with
the same sequence of unmatched bracket symbols as \(x \) will also match \(z \), hence
be equivalent to \(x \). We may as well choose the shortest such \(y \), which consists
entirely of (and] characters, and use this as the canonical representative of the
equivalence class. Specifically:

For \(L^0 \) the equivalence classes correspond to (arbitrary-length) strings in \{)\}*.
For \(L^0_0 \) the classes correspond to strings in \{)\} of length at most \(k \).

For \(L^0_{\{ 0 \}} \) the equivalence classes correspond to (arbitrary-length) strings in \{(,\}*.
For \(L^0_{\{ 0 \}^k} \) the classes correspond to strings in \{(,\} containing at most \(j \) (char-
acters and a most \(k \)] characters. For a given pair \((j, k) \) there are many such
strings, and the order of symbols is important. For example, “(([]))” is in \(L^0_{\{ 0 \}^k} \),
but “(([]))” is not.

There is, in addition, a single equivalence class containing all strings that have
errors. All such strings are equivalent, since there is no way to correct an error
by extending the string.

The non-error equivalence classes for \(L^0 \) can also be though of as natural num-
bers. The equivalence class of a string corresponds to the number of unclosed
parentheses it contains. For example,

\[(((((0))(0))0)0)(0)(\ldots \]

are in equivalence class 3.

(b) Construct a minimum state DFA recognizing \(L^4_0 \). A state diagram is
sufficient. Include all the states.
(answer b) The states are the equivalence classes of \(\equiv_{L_4} \), that is,

\[
\{ q_e, q_{(i)}, q_{(i,j)}, q_{(i,j,k)}, q_{\text{err}} \}
\]

The transition function is

\[
\begin{align*}
\delta(q_{(i)}, \text{'}(i')) &= q_{(i+1)} & 0 \leq i < 4 \\
\delta(q_{(i)}, \text{'}) &= q_{(i-1)} & 0 < i \leq 4 \\
\delta(q, a) &= q_{\text{err}} & \text{otherwise}
\end{align*}
\]

The only final state is \(q_e \). It should be clear that this is the minimal machine, constructed using the Myhill-Nerode relation from part (a).

(e) Construct a minimum state DFA recognizing \(L^{2,1}_{(0)} \). Give a state diagram, and describe the machine’s operation well enough for us to understand it.

(answer c) We proceed in a similar fashion. Now the states of our machine are

\[
\{ q_{\text{err}} \} \cup \{ q_w \mid w \in \{ \text{'}(i)^* \text{'} \} \wedge \#(w) \leq 2 \wedge \#(w) \leq 1 \}
\]

The transition function is

\[
\begin{align*}
\delta(q_w, \text{'}(i')) &= q_w(\text{'}) & \#(w) < 2 \\
\delta(q_w, \text{'}) &= q_w(\text{'}) & \#(w) < 2 \\
\delta(q_w, \text{'}(i')) &= q_w(\text{'}) & \#(w) < 1 \\
\delta(q_w, \text{'}) &= q_w(\text{'}) & \#(w) < 1 \\
\delta(q_w, a) &= q_{\text{err}} & \text{otherwise}
\end{align*}
\]

The only final state is \(q_e \). Again, this is just the minimal machine, constructed using the Myhill-Nerode relation from part (a).

(d) How many states are there in a minimum state DFA recognizing \(L^{m,1}_{(0)} \), expressed as a function of \(m \)? Explain your answer. If you want to show off, give a formula for the number of states in the minimum state DFA recognizing \(L^{m,n}_{(0)} \) as a function of \(m \) and \(n \).
(answer d) Since at most one [is allowed, we can express the answer by brute force: for each possible number \(i \) of (characters, there are \(i + 2 \) possibilities: \(i + 1 \) possible positions of a [character, or no [character at all. This yields

\[
N = \sum_{i=0}^{m} (i + 2) = 2m + 2 + \sum_{i=0}^{m} i = 2m + 2 + \frac{m(m + 1)}{2}
\]

Note this is quadratic in \(m \).

To show off, observe that the number of ways to construct a string of \(i \) (characters and \(j \) [characters is just the number of ways to choose \(j \) positions (the square brackets) out of \(i + j \) positions (all the characters). This is just the binomial coefficient

\[
\binom{i+j}{j}
\]

leading to the expression

\[
N = \sum_{i=0}^{m} \sum_{j=0}^{n} \binom{i+j}{j}
\]

which you may feel free to simplify.

(e) For any \(m \) and \(n \), show (inductively) how to construct a regular expression \(R_{m,n} \) that generates \(L^{m,n}_{()}\).

answer e This is similar to the technique we used in class extended to handle two kinds of parentheses. We’ll define \(R_{m,n} \) inductively by

\[
R_{0,0} = \epsilon
\]

\[
R_{i+1,j} = R_{i,j} \{ (R_{i,j})R_{i,j} \}^*
\]

\[
R_{i,j+1} = R_{i,j} \{ [R_{i,j}]R_{i,j} \}^*
\]

Since there is no requirement that \(m \) and \(n \) be equal, we need to induct separately on \(i \) and \(j \).