Today: Probabilistic Parsing

Goal: Find the most likely parse.

1. Parsing with PCFGs
2. Problems
3. Probabilistic lexicalized CFGs
CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N

2. a set of terminal symbols Σ (disjoint from N)

3. a set of productions, P, each of the form $A \rightarrow \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings ($\Sigma \cup N$)

4. a designated start symbol S
Probabilistic CFGs

Augments each rule in P with a conditional probability:

$$A \rightarrow \beta \ [p]$$

where p is the probability that the non-terminal A will be expanded to the sequence β. Often referred to as

$$P(A \rightarrow \beta) \text{ or } P(A \rightarrow \beta | A).$$
Example

<table>
<thead>
<tr>
<th>Production</th>
<th>Probability</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow NP \ VP)</td>
<td>0.80</td>
<td>(Det \rightarrow that)</td>
</tr>
<tr>
<td>(S \rightarrow Aux \ NP \ VP)</td>
<td>0.15</td>
<td>(Noun \rightarrow book)</td>
</tr>
<tr>
<td>(S \rightarrow VP)</td>
<td>0.05</td>
<td>(Noun \rightarrow flights)</td>
</tr>
<tr>
<td>(NP \rightarrow Det \ Nom)</td>
<td>0.20</td>
<td>(Noun \rightarrow meal)</td>
</tr>
<tr>
<td>(NP \rightarrow Proper-Noun)</td>
<td>0.35</td>
<td>(Verb \rightarrow book)</td>
</tr>
<tr>
<td>(NP \rightarrow Nom)</td>
<td>0.05</td>
<td>(Verb \rightarrow include)</td>
</tr>
<tr>
<td>(NP \rightarrow Pronoun)</td>
<td>0.40</td>
<td>(Verb \rightarrow want)</td>
</tr>
<tr>
<td>(Nom \rightarrow Noun)</td>
<td>0.75</td>
<td>(Aux \rightarrow can)</td>
</tr>
<tr>
<td>(Nom \rightarrow Noun \ Nom)</td>
<td>0.20</td>
<td>(Aux \rightarrow does)</td>
</tr>
<tr>
<td>(Nom \rightarrow Proper-Noun \ Nom)</td>
<td>0.05</td>
<td>(Aux \rightarrow do)</td>
</tr>
<tr>
<td>(VP \rightarrow Verb)</td>
<td>0.55</td>
<td>(Proper-Noun \rightarrow TWA)</td>
</tr>
<tr>
<td>(VP \rightarrow Verb \ NP)</td>
<td>0.40</td>
<td>(Proper-Noun \rightarrow Denver)</td>
</tr>
<tr>
<td>(VP \rightarrow Verb \ NP \ NP)</td>
<td>0.05</td>
<td>(Pronoun \rightarrow you)</td>
</tr>
</tbody>
</table>
Why are PCFGs useful?

- Assigns a probability to each parse tree T
- Useful in disambiguation
 - Choose the most likely parse
 - Computing the probability of a parse
 If we make independence assumptions, $P(T) = \prod_{n \in T} p(r(n))$.
- Useful in language modeling tasks
Example

(a) S → Aux NP VP .15
 Aux → Pro .40
 NP → V NP .05
 VP → V NP Nom .05
 NP → PNoun Nom .35
 Nom → Noun .75
 Aux → Can .40
 NP → Pro .40
 Pro → you .40
 Verb → book .30
 PNoun → TWA .40
 Noun → flights .50

(b) S → Aux NP VP .15
 Aux → Pro .40
 NP → V NP .05
 VP → V NP Nom .05
 NP → PNoun Nom .35
 Nom → Noun .75
 Aux → Can .40
 NP → Pro .40
 Pro → you .40
 Verb → book .30
 PNoun → TWA .40
 Noun → flights .50
Where does the grammar come from?

1. developed manually
2. from a treebank
Treebanks

- Corpus with sentence - parse tree (presumably the right one) pairs.
 - (S ('' ' ')
 (S-TPC-2
 (NP-SBJ-1 (PRP We))
 (VP (MD would)
 (VP (VB have)
 (S
 (NP-SBJ (-NONE- *-1))
 (VP (TO to)
 (VP (VB wait)
 (SBAR-TMP (IN until)
 (S
 (NP-SBJ (PRP we))
 (VP (VBP have)
 (VP (VBN collected)
 (PP-CLR (IN on)
 (NP (DT those)(NNS assets)))))))))))
 (. .) ('' ' ')
 (NP-SBJ (PRP he))
 (VP (VBD said)
 (S (-NONE- *T*-2)))
 (. .)))
 (. .))}

- Penn TreeBank a widely used treebank.

 - Most well known is the Wall Street Journal section of the Penn TreeBank.
Treebanks

• How are they created?
 – Parse the collection with an automatic parser
 – Manually correct each parse as necessary.

• Requires detailed annotation guidelines that provide
 – a POS tagset
 – a grammar
 – instructions for how to deal with particular grammatical constructions.
Treebank Grammars

• Treebanks implicitly define a grammar.
• Simply take the local rules that make up the sub-trees in all the trees in the collection and you have a grammar.
• Not complete, but if you have decent size corpus, you’ll have a grammar with decent coverage.
Treebank Grammars

• Tend to be very flat due to the fact that they tend to avoid recursion.
 – To ease the annotators burden
• For example, the Penn Treebank has 4500 different rules for VPs. Among them...

```
VP → VBD PP
VP → VBD PP PP
VP → VBD PP PP PP
VP → VBD PP PP PP PP
```
Where do the probabilities come from?

1. from a treebank:

\[P(\alpha \rightarrow \beta | \alpha) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)} \]

2. use EM (forward-backward algorithm, inside-outside algorithm)
Parsing with PCFGs

Produce the most likely parse for a given sentence:

$$\hat{T}(S) = \arg\max_{T \in \tau(S)} P(T)$$

where $\tau(S)$ is the set of possible parse trees for S.

- Augment the Earley algorithm to compute the probability of each of its parses.

 When adding an entry E of category C to the chart using rule i with n subconstituents, E_1, \ldots, E_n:

 $$P(E) = P(rule\ i \mid C) \times P(E_1) \times \ldots \times P(E_n)$$

- probabilistic CKY (Cocke-Kasami-Younger) algorithm

Slide CS474–9
Problems with PCFGs

Do not model *structural dependencies*.

Often the choice of how a non-terminal expands depends on the location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken sentence to be a pronoun.

- 91% of declarative sentences in the Switchboard corpus are pronouns (vs. lexical).
- In contrast, 34% of direct objects in Switchboard are pronouns.
Problems with PCFGs

Do not adequately model *lexical dependencies*.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:
NP \rightarrow NP PP or VP \rightarrow V NP PP?

Attachment choice depends (in part) on the verb: *send* subcategorizes for a destination (e.g. expressed via a PP that begins with *into* or *to* or ...).
Probabilistic lexicalized CFGs

- Each non-terminal is associated with its head.
- Each PCFG rule needs to be augmented to identify one rhs constituent to be the head daughter.
- Headword for a node in the parse tree is set to the headword of its head daughter.
Example

workers dumped sacks into a bin
Noun Phrases

NP

PreDet

| all

Det

| the

NP

Noun

flights

Nom

from Denver

Nom

morning

Gerundive VP

leaving before 10

PP

to Tampa
Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

\[
\begin{align*}
VP(\text{dumped}) & \rightarrow \text{VBD(}\text{dumped} \text{)} \text{ NP(}\text{sacks} \text{)} \text{ PP(}\text{into} \text{)} [3 \times 10^{-10}] \\
VP(\text{dumped}) & \rightarrow \text{VBD(}\text{dumped} \text{)} \text{ NP(}\text{cats} \text{)} \text{ PP(}\text{into} \text{)} [8 \times 10^{-10}] \\
VP(\text{dumped}) & \rightarrow \text{VBD(}\text{dumped} \text{)} \text{ NP(}\text{sacks} \text{)} \text{ PP(}\text{above} \text{)} [1 \times 10^{-12}] \\
\ldots
\end{align*}
\]

Problem?
Evaluation Measures and State of the Art

• labeled recall: \(\frac{\# \text{ correct constituents in candidate parse of } s}{\# \text{ correct constituents in treebank parse of } s} \)

• labeled precision: \(\frac{\# \text{ correct constituents in candidate parse of } s}{\text{total } \# \text{ of constituents in candidate parse of } s} \)

• crossing brackets: the number of crossed brackets

State of the art: 90% recall, 90% precision, 1% crossed bracketed constituents per sentence (WSJ treebank)