Outline

- noun phrase coreference resolution
 - a (supervised) machine learning approach
 - evaluation
 - problems...some solutions
- weakly supervised approaches

Knowledge-based approaches are still common. E.g.
- Lappin & Leass [1994]
- CogNIAC [Baldwin, 1996]
A Machine Learning Approach

- Classification
 - given a description of two noun phrases, NP_i and NP_j, classify the pair as coreferent or not coreferent

[Queen Elizabeth] set about transforming [her] [husband], ...

coref ? coref ? coref ?

Aone & Bennett [1995]; Connolly et al. [1994]; McCarthy & Lehnert [1995]; Soon et al. [2001]; Ng & Cardie [2002]; …
A Machine Learning Approach

- Clustering
 - coordinates pairwise coreference decisions

[Queen Elizabeth], not coref

[her] coref

[husband] not coref

Queen Elizabeth

her

King George VI

husband

the King

his

Logue

a renowned speech therapist

Clustering Algorithm
Training Data Creation

- Creating training instances
 - texts annotated with coreference information

 candidate antecedent \hspace{1cm} \text{anaphor}

 - one instance $\text{inst}(NP_i, NP_j)$ for each ordered pair of NPs
 - NP_i precedes NP_j
 - feature vector: describes the two NPs and context
 - class value:
 - coref pairs on the same coreference chain
 - not coref otherwise
Instance Representation

- 25 features per instance
 - lexical (3)
 » string matching for pronouns, proper names, common nouns
 - grammatical (18)
 » pronoun_1, pronoun_2, demonstrative_2, indefinite_2, ...
 » number, gender, animacy
 » appositive, predicate nominative
 » binding constraints, simple contra-indexing constraints, ...
 » span, maximalnp, ...
 - semantic (2)
 » same WordNet class
 » alias
 - positional (1)
 » distance between the NPs in terms of # of sentences
 - knowledge-based (1)
 » naïve pronoun resolution algorithm
Learning Algorithm

- RIPPER (Cohen, 1995)
 - C4.5 (Quinlan, 1994)
 - rule learners
 » input: set of training instances
 » output: coreference classifier

- Learned classifier
 » input: test instance (represents pair of NPs)
 » output: classification
 confidence of classification
Clustering Algorithm

- Best-first single-link clustering
 - Mark each \(NP_j \) as belonging to its own class:
 \[NP_j \in c_j \]
 - Proceed through the NPs in left-to-right order.
 » For each NP, \(NP_j \), create test instances, \(inst(NP_i, NP_j) \), for all of its preceding NPs, \(NP_i \).
 » Select as the antecedent for \(NP_j \) the highest-confidence coreferent NP, \(NP_i \), according to the coreference classifier (or none if all have below .5 confidence);
 Merge \(c_j \) and \(c_j \).
Outline

- noun phrase coreference resolution
- a (supervised) machine learning approach
 - evaluation
 - problems...some solutions
- weakly supervised approaches
Evaluation

- MUC-6 and MUC-7 coreference data sets
- documents annotated w.r.t. coreference
- 30 + 30 training texts (dry run)
- 30 + 20 test texts (formal evaluation)
- scoring program
 - recall
 - precision
 - F-measure: $2PR/(P+R)$
Results

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Ng & Cardie</td>
<td>63.3</td>
<td>76.9</td>
</tr>
<tr>
<td>Best MUC System</td>
<td>59</td>
<td>72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Baseline</td>
<td>40.7</td>
<td>73.5</td>
</tr>
<tr>
<td>Worst MUC System</td>
<td>36</td>
<td>44</td>
</tr>
<tr>
<td>Best MUC System</td>
<td>59</td>
<td>72</td>
</tr>
</tbody>
</table>
Classifier for MUC-6 Data Set
Problem 1

- Coreference is a rare relation
 - skewed class distributions (2% positive instances)
 - *remove some negative instances*

farthest antecedent
Problem 2

- Coreference is a discourse-level problem with different solutions for different types of NPs
 - proper names: string matching and aliasing
 - inclusion of “hard” positive training instances
 - positive example selection: selects easy positive training instances (cf. Harabagiu et al. (2001))

Queen Elizabeth set about transforming her husband, King George VI, into a viable monarch. Logue, the renowned speech therapist, was summoned to help the King overcome his speech impediment...
Problem 3

- Coreference is an equivalence relation
 - loss of transitivity
 - need to tighten the connection between classification and clustering
 - prune learned rules w.r.t. the clustering-level coreference scoring function

[Queen Elizabeth] set about transforming [her] [husband], ...

[coref? coref? not coref?]
Results

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>40.7</td>
<td>73.5</td>
<td>52.4</td>
<td>27.2</td>
</tr>
<tr>
<td>NEG-SELECT</td>
<td>46.5</td>
<td>67.8</td>
<td>55.2</td>
<td>37.4</td>
</tr>
<tr>
<td>POS-SELECT</td>
<td>53.1</td>
<td>80.8</td>
<td>64.1</td>
<td>41.1</td>
</tr>
<tr>
<td>NEG-SELECT + POS-SELECT</td>
<td>63.4</td>
<td>76.3</td>
<td>69.3</td>
<td>59.5</td>
</tr>
<tr>
<td>NEG-SELECT + POS-SELECT + RULE-SELECT</td>
<td>63.3</td>
<td>76.9</td>
<td>69.5</td>
<td>54.2</td>
</tr>
</tbody>
</table>

- Ultimately: large increase in F-measure, due to gains in recall
Comparison with Best MUC Systems

<table>
<thead>
<tr>
<th>Method</th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>NEG-SELECT + POS-SELECT + RULE-SELECT</td>
<td>63.3</td>
<td>76.9</td>
</tr>
<tr>
<td>Best MUC System</td>
<td>59</td>
<td>72</td>
</tr>
</tbody>
</table>
Supervised ML for NP Coreference

- Good performance compared to other systems, but... *lots* of room for improvement
 - Common nouns < pronouns < proper nouns
 - Tighter connection between classification and clustering is possible
 - Need additional data sets
 » ACE data from Penn’s LDC
 » General problem: reliance on manually annotated data...
Outline

- noun phrase coreference resolution
- a (supervised) machine learning approach
- weakly supervised approaches
 - background
 - two techniques
 - evaluation
Weakly Supervised Approaches

- Idea:
 bootstrap (NP coreference) classifiers using a small amount of labeled data (expensive) and a large amount of unlabeled data (cheap)

- Methods
 - Co-training
 - Self-training
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Unlabeled data (U)
Co-Training [Blum and Mitchell, 1998]

\[\text{Labeled data (L)} \]

\[\text{Unlabeled data (U)} \]

\[\text{Classifier } h_1 \]

\[\text{Classifier } h_2 \]

view \(V_1 \)

view \(V_2 \)
Co-Training [Blum and Mitchell, 1998]

Labeled data (L)

Unlabeled data (U)

Classifier h_1

Classifier h_2

view V_1

view V_2
Co-Training [Blum and Mitchell, 1998]

- Labeled data (L)
 - View V_1
 - Classifier h_1
- Unlabeled data (U)
 - View V_2
 - Classifier h_2
- Data pool (D)
Co-Training [Blum and Mitchell, 1998]
Potential Problems with Co-Training

- **Strong assumptions on the views** (Blum and Mitchell, 1998)
 - each view must be sufficient for learning the target concept
 - the views must be conditionally independent given the class
 - empirically shown to be sensitive to these assumptions (Muslea et al., 2002)

- **A number of parameters need to be tuned**
 - views, data pool size, growth size, number of iterations, initial size of labeled data
 - algorithm is sensitive to its input parameters (Nigam and Ghani, 2000; Pierce and Cardie, 2001; Pierce 2003)
Multi-view algorithm
 - Is there any natural feature split for NP coreference?
 » View factorization is a non-trivial problem for coreference
 ◆ Mueller et al.’s (2002) greedy method
Self-Training with Bagging
[Banko and Brill, 2001]

Labeled data (L)

Unlabeled data (U)
Self-Training with Bagging
[Banko and Brill, 2001]

x x x

Labeled data (L)

Bagged Classifier h_1

Bagged Classifier h_2

. . .

Bagged Classifier h_n

x x x x x x x x x x x x x

Unlabeled data (U)
Self-Training with Bagging
[Banko and Brill, 2001]

Unlabeled data (U)

Labeled data (L)

Bagged Classifier \(h_1 \)

Bagged Classifier \(h_2 \)

\[\ldots \]

Bagged Classifier \(h_n \)
Self-Training with Bagging
[Banko and Brill, 2001]

Consistently labeled

Labeled data (L)

Bagged Classifier \(h_1 \)

Bagged Classifier \(h_2 \)

... ...

Bagged Classifier \(h_n \)

Unlabeled data (U)

\[\text{Bagged} \]

\[\text{Classifier} h \]

\[x \]
Plan for the Talk

- noun phrase coreference resolution
- a (supervised) machine learning approach
- weakly supervised approaches
 - background
 - two techniques
 - evaluation
Evaluation

- MUC-6 and MUC-7 coreference data sets
- labeled data (L): one dryrun text
 » 3500-3700 instances
- unlabeled data (U): remaining 29 dryrun texts
- vs. fully supervised ML
 – ~500,000 instances (30 dryrun texts)
Results (Baseline)

- train a naïve Bayes classifier on the single (labeled) text using all 25 features

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th>MUC-7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
</tr>
</tbody>
</table>
Evaluating the Weakly Supervised Algorithms

- Determine the best parameter setting of each algorithm (in terms of its effectiveness in improving performance)
Co-Training Parameters

- Views (3 heuristic methods for view factorization)
 - Mueller et al.’s (2002) greedy method
 - random splitting
 - splitting according to the feature type

- Pool size
 - 500, 1000, 5000

- Growth size
 - 10, 50, 100, 200, 250

- Number of co-training iterations
 - run until performance stabilized
Results (Co-Training)

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
</tr>
</tbody>
</table>

- co-training produces improvements over the baseline at its best parameter settings
Results (Co-Training)

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th></th>
<th>MUC-7</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
<td>P</td>
<td>F</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
<td>37.4</td>
<td>43.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
<td>77.6</td>
<td>53.3</td>
</tr>
<tr>
<td>Supervised ML* (~500,000 insts)</td>
<td>63.3</td>
<td>76.9</td>
<td>69.5</td>
<td>54.2</td>
<td>76.3</td>
<td>63.4</td>
</tr>
</tbody>
</table>

- co-training produces improvements over the baseline at its best parameter settings
Learning Curve for Co-Training (MUC-6)

pool size: 5000; growth size: 50; views: feature type

Number of Co-Training Iterations

F-measure
Baseline
Learning Curve for Co-Training (MUC-6)

pool size: 5000; growth size: 50; views: feature type;

|L| = 1000

Number of Iterations

Baseline
F-measure
Learning Curve for Co-Training (MUC-6)

pool size: 5000; growth size: 50; views: Mueller’s

Number of Co-Training Iterations

F-measure
Baseline
Self-Training Parameters

- Number of bags
 - tested all odd number of bags between 1 and 25

- 25 bags are sufficient for most learning tasks (Breiman, 1996)
Results (Self-Training with Bagging)

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
<td>64.1</td>
<td>54.6</td>
</tr>
</tbody>
</table>

- Self-training performs better than co-training
Self-Training: Effect of the Number of Bags (MUC-6)

Number of Bags

F-measure
Baseline
Results

<table>
<thead>
<tr>
<th></th>
<th>MUC-6</th>
<th></th>
<th>MUC-7</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Baseline</td>
<td>58.3</td>
<td>52.9</td>
<td>55.5</td>
<td>52.8</td>
</tr>
<tr>
<td>Co-Training</td>
<td>47.5</td>
<td>81.9</td>
<td>60.1</td>
<td>40.6</td>
</tr>
<tr>
<td>Self-Training with Bagging</td>
<td>54.1</td>
<td>78.6</td>
<td>64.1</td>
<td>54.6</td>
</tr>
<tr>
<td>Supervised ML* (~500,000 insts)</td>
<td>63.3</td>
<td>76.9</td>
<td>69.5</td>
<td>54.2</td>
</tr>
</tbody>
</table>
Summary

- Supervised ML approach to NP coreference resolution
 - Good performance relative to other approaches
 - Still lots of room for improvement

- Weakly supervised approaches are promising
 - Not as good performance as fully supervised, but use much less manually annotated training data

- For problems where no natural view factorization exists...
 - Single-view weakly supervised algorithms
 » Self-training with bagging
...and also

1. Illustrate how much you’ve learned
2. Realities of doing work in NLP+ML
3. Introduce some cool weakly supervised learning methods