CS474 Natural Language Processing

- Last class
 - Intro to lexical semantics

- Today
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 » Dictionary-based approaches
 » Supervised machine learning methods
 » Issues for WSD evaluation

Word sense disambiguation

- Given a *fixed* set of senses associated with a lexical item, determine which of them applies to a particular instance of the lexical item

- Two fundamental approaches
 - WSD occurs during semantic analysis as a side-effect of the elimination of ill-formed semantic representations
 - Stand-alone approach
 » WSD is performed independent of, and prior to, compositional semantic analysis
 » Makes minimal assumptions about what information will be available from other NLP processes
 » Applicable in large-scale practical applications

Dictionary-based approaches

- Rely on machine readable dictionaries
- Initial implementation of this kind of approach is due to Michael Lesk (1986)
 - Given a word \(W \) to be disambiguated in context \(C \)
 » Retrieve all of the sense definitions, \(S \), for \(W \) from the MRD
 » Compare each \(s \) in \(S \) to the dictionary definitions \(D \) of all the remaining words \(c \) in the context \(C \)
 » Select the sense \(s \) with the most overlap with \(D \) (the definitions of the context words \(C \))

Example

- Word: *cone*
- Context: *pine cone*
- Sense definitions
 - *pine* 1 kind of evergreen tree with needle-shaped leaves
 2 waste away through sorrow or illness
 - *cone* 1 solid body which narrows to a point
 2 something of this shape whether solid or hollow
 3 fruit of certain evergreen trees

- Accuracy of 50-70% on short samples of text from *Pride and Prejudice* and an AP newswire article.
Machine learning approaches

- Machine learning methods
 - Supervised inductive learning
 - Bootstrapping
 - Unsupervised

- Emphasis is on acquiring the knowledge needed for the task from data, rather than from human analysts.

Inductive ML framework

Examples of task
(features + class)

description of context
ML Algorithm

Novel example
(features)
Classifier
(program)

correct word sense

learn one such classifier for each lexeme to be disambiguated

target: the word to be disambiguated

context: portion of the surrounding text
 - Select a “window” size
 - Tagged with part-of-speech information
 - Stemming or morphological processing
 - Possibly some partial parsing

Convert the context (and target) into a set of features
 - Attribute-value pairs
 - Numeric, boolean, categorical,

Running example

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

1 Fish sense
2 Musical sense
3 ...

Feature vector representation
Collocational features

- Encode information about the lexical inhabitants of specific positions located to the left or right of the target word.
 - E.g. the word, its root form, its part-of-speech
 - An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

<table>
<thead>
<tr>
<th>pre2-word</th>
<th>pre2-pos</th>
<th>pre1-word</th>
<th>pre1-pos</th>
<th>fol1-word</th>
<th>fol1-pos</th>
<th>fol2-word</th>
<th>fol2-pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>guitar</td>
<td>NN1</td>
<td>and</td>
<td>CJC</td>
<td>player</td>
<td>NN1</td>
<td>stand</td>
<td>VVB</td>
</tr>
</tbody>
</table>

Co-occurrence features

- Encodes information about neighboring words, ignoring exact positions.
 - Select a small number of frequently used content words for use as features
 - 12 most frequent content words from a collection of bass sentences drawn from the WSJ: fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band
 - Co-occurrence vector (window of size 10)
 - Attributes: the words themselves (or their roots)
 - Values: number of times the word occurs in a region surrounding the target word

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Inductive ML framework

Examples of task
(features + class)

description of context

ML Algorithm

correct word sense

Novel example
(features)

Classifier
(program)

class

learn one such classifier for each lexeme to be disambiguated