Chart Parsers

chart: data structure that stores partial results of the parsing process in such a way that they can be reused. The chart for an n-word sentence consists of:

- \(n + 1 \) vertices
- a number of edges that connect vertices

Slide CS474–17

Chart Parsing: The General Idea

The process of parsing an n-word sentence consists of forming a chart with \(n + 1 \) vertices and adding edges to the chart one at a time.

- Goal: To produce a complete edge that spans from vertex 0 to \(n \) and is of category \(S \).
- There is no backtracking.
- Everything that is put in the chart stays there.
- Chart contains all information needed to create parse tree.

Slide CS474–18

Bottom-UP Chart Parsing Algorithm

Do until there is no input left:

1. If the agenda is empty, get next word from the input, look up word categories, add to agenda (as constituent spanning two positions).
2. Select a constituent from the agenda: constituent \(C \) from \(p_1 \) to \(p_2 \).
3. Insert \(C \) into the chart from position \(p_1 \) to \(p_2 \).
4. For each rule in the grammar of form \(X \to C \cdot X_1 \ldots X_n \), add an active edge of form \(X \to C \cdot X_1 \ldots X_n \) from \(p_1 \) to \(p_2 \).
5. Extend existing edges that are looking for a \(C \).
 (a) For any active edge of form \(X \to X_1 \ldots \circ C \cdot X_n \) from \(p_0 \) to \(p_1 \), add a new active edge \(X \to X_1 \ldots C \cdot X_n \) from \(p_0 \) to \(p_2 \).
 (b) For any active edge of form \(X \to X_1 \ldots X_n \circ C \) from \(p_0 \) to \(p_1 \), add a new (completed) constituent of type \(X \) from \(p_0 \) to \(p_2 \) to the agenda.

Slide CS474–19

Slide CS474–20
Grammar and Lexicon

Grammar:
1. $S \rightarrow NP \ VP$
2. $NP \rightarrow ART \ N$
3. $NP \rightarrow ART \ ADJ \ N$
4. $VP \rightarrow V \ NP$

Lexicon:
the: ART
man: N, V
old: ADJ, N
boat: N

Sentence: 1 The 2 old 3 man 4 the 5 boat 6
Efficient Parsing

\[n = \text{sentence length} \]

Time complexity for naive algorithm: exponential in \(n \)

Time complexity for bottom-up chart parser: \(O(n^3) \)

Options for improving efficiency:

1. Don’t do twice what you can do once.
2. Don’t represent distinctions that you don’t need.
 - Fall leaves fall and spring leaves spring.
3. Don’t do once what you can avoid altogether.
 - The can holds the water. ("can": AUX, V, N)

Earley Algorithm: Top-Down Chart Parser

For all S rules of the form \(S \rightarrow X_1 \ldots X_k \), add a (top-down) edge from 1 to 1 labeled: \(S \rightarrow \circ X_1 \ldots X_k \).

Do until there is no input left:

1. If the agenda is empty, look up word categories for next word, add to agenda.
2. Select a constituent from the agenda: constituent \(C \) from \(p_1 \) to \(p_2 \).
3. Using the (bottom-up) edge extension algorithm, combine \(C \) with every active edge on the chart (adding \(C \) to chart as well). Add any new constituents to the agenda.
4. For any active edges created in Step 3, add them to the chart using the top-down edge introduction algorithm.

Grammar and Lexicon

<table>
<thead>
<tr>
<th>Grammar</th>
<th>Lexicon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (S \rightarrow \text{NP } \text{VP})</td>
<td>the: ART</td>
</tr>
<tr>
<td>2. (\text{NP} \rightarrow \text{ART } \text{ADJ } \text{N})</td>
<td>large: ADJ</td>
</tr>
<tr>
<td>3. (\text{NP} \rightarrow \text{ART } \text{N})</td>
<td>can: N, AUX, V</td>
</tr>
<tr>
<td>4. (\text{NP} \rightarrow \text{ADJ } \text{N})</td>
<td>hold: N, V</td>
</tr>
<tr>
<td>5. (\text{VP} \rightarrow \text{AUX } \text{VP})</td>
<td>water: N, V</td>
</tr>
<tr>
<td>6. (\text{VP} \rightarrow \text{V } \text{NP})</td>
<td></td>
</tr>
</tbody>
</table>

Sentence: 1. The 2 large 3 can 4 can 5 hold 6 water 7