Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
- Writing critiques

Early Roots: 1940’s and 1950’s

- Work on two foundational paradigms
 - Automaton
 - Turing’s (1936) model of algorithmic computation
 - Kleene’s (1951, 1956) finite automata and regular expressions
 - Shannon (1948) applied probabilistic models of discrete Markov processes to automata for language
 - Chomsky (1956)
 - First considered finite-state machines as a way to characterize a grammar
 - Led to the field of formal language theory
Early Roots: 1940’s and 1950’s

- Work on two foundational paradigms
 - Probabilistic or information-theoretic models for speech and language processing
 - Shannon: the “noisy channel” model
 - Shannon: borrowing of “entropy” from thermodynamics to measure the information content of a language

Two Camps: 1957-1970

- Symbolic paradigm
 - Chomsky
 - Formal language theory, generative syntax, parsing
 - Linguists and computer scientists
 - Earliest complete parsing systems
 - Zelig Harris, UPenn
 - ...A possible critique reading!!

- Artificial intelligence
 - Created in the summer of 1956
 - Two-month workshop at Dartmouth
 - Focus of the field initially was the work on reasoning and logic (Newell and Simon)
 - Early natural language systems were built
 - Worked in a single domain
 - Used pattern matching and keyword search

- Stochastic paradigm
 - Took hold in statistics and EE
 - Late 50’s: applied Bayesian methods to OCR
 - Mosteller and Wallace (1964): applied Bayesian methods to the problem of authorship attribution for The Federalist papers.
Additional Developments

1960’s
- First serious testable psychological models of human language processing
 - Based on transformational grammar
- First on-line corpora
 - The Brown corpus of American English
 - 1 million word collection
 - Samples from 500 written texts
 - Different genres (news, novels, non-fiction, academic, …)
 - Assembled at Brown University (1963-64, Kucera and Francis)
 - William Wang’s (1967) DOC (Dictionary on Computer)
 - On-line Chinese dialect dictionary

1970-1983
- Explosion of research
 - Stochastic paradigm
 - Developed speech recognition algorithms
 - HMM’s
 - Developed independently by Jelinek et al. at IBM and Baker at CMU
 - Logic-based paradigm
 - Prolog, definite-clause grammars (Pereira and Warren, 1980)
 - Functional grammar (Kay, 1979) and LFG

1970-1983

Explosion of research
- Natural language understanding
 - SHRDLU (Winograd, 1972)
 - The Yale School
 - Focused on human conceptual knowledge and memory organization
 - Logic-based LUNAR question-answering system (Woods, 1973)
- Discourse modeling paradigm

Revival of Empiricism and FSM’s

1983-1993
- Finite-state models
 - Phonology and morphology (Kaplan and Kay, 1981)
 - Syntax (Church, 1980)
- Return of empiricism
 - Rise of probabilistic models in speech and language processing
 - Largely influenced by work in speech recognition at IBM
- Considerable work on natural language generation
A Reunion of a Sort…

- 1994-pres
 - Probabilistic and data-driven models had become quite standard
 - Increases in speed and memory of computers allowed commercial exploitation of speech and language processing
 » Spelling and grammar checking
 - Rise of the Web emphasized the need for language-based information retrieval and information extraction

Statistical and Machine Learning Approaches Rule!

<table>
<thead>
<tr>
<th>Year</th>
<th>WLVC</th>
<th>EMNLP</th>
<th>Total</th>
<th>Some ML</th>
<th>No ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992 ACL</td>
<td>24%</td>
<td></td>
<td>8/34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994 ACL</td>
<td>35%</td>
<td></td>
<td>14/40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996 ACL</td>
<td>39%</td>
<td></td>
<td>16/41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>WLVC</th>
<th>EMNLP</th>
<th>Total</th>
<th>Some ML</th>
<th>No ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999 ACL</td>
<td>60%</td>
<td></td>
<td>41/69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001 NAACL</td>
<td>87%</td>
<td></td>
<td>27/31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13%</td>
</tr>
</tbody>
</table>

WVL C and EMNLP Conferences

- Workshop on Very Large Corpora
- Conference on Empirical Methods in NLP

Empirical Evaluation
Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
- Writing critiques

Semantic analysis

- Assigning meanings to linguistic utterances
- **Compositional semantics**: we can derive the meaning of the whole sentence from the meanings of the parts.
 - Max ate a green apple.
- Relies on knowing:
 - the meaning of individual words
 - how the meanings of individual words combine to form the meaning of groups of words
 - how it all fits in with syntactic analysis

Caveats

- Problems with a compositional approach
 - a former congressman
 - a toy elephant
 - kicked the bucket
Introduction to lexical semantics

- Lexical semantics is the study of
 - the systematic meaning-related connections among words and
 - the internal meaning-related structure of each word
- Lexeme
 - an individual entry in the lexicon
 - a pairing of a particular orthographic and phonological form with some form of symbolic meaning representation
- Sense: the lexeme’s meaning component
- Lexicon: a finite list of lexemes

Dictionary entries

- **right** *adj.* located nearer the right hand esp. being on the right when facing the same direction as the observer.
- **left** *adj.* located nearer to this side of the body than the right.
- **red** *n.* the color of blood or a ruby.
- **blood** *n.* the red liquid that circulates in the heart, arteries and veins of animals.

Next class

- Providing an NLP system with a large enough knowledge base of such facts will enable it to perform fairly sophisticated semantic tasks (even if the system doesn’t know its right from its left).

Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
- Writing critiques
Critique Guidelines

- <=1 page, typed (single space)
- The purpose of a critique is **not** to summarize the paper; rather you should choose one or two points about the work that you found interesting.
- Examples of questions that you might address are:
 - What are the strengths and limitations of its approach?
 - Is the evaluation fair? Does it achieve it support the stated goals of the paper?
 - Does the method described seem mature enough to use in real applications? Why or why not? What applications seem particularly amenable to this approach?
 - What good ideas does the problem formulation, the solution, the approach or the research method contain that could be applied elsewhere?
 - What would be good follow-on projects and why?

Critique Guidelines

- Are the paper's underlying assumptions valid?
- Did the paper provide a clear enough and detailed enough description of the proposed methods for you to be able to implement them? If not, where is additional clarification or detail needed?

- **Avoid unsupported** value judgments, like ``I liked...'' or ``I disagreed with...'' If you make judgments of this sort, explain why you liked or disagreed with the point you describe.

- Be sure to distinguish comments about the writing of the paper from comment about the technical content of the work.