Question Answering

Predictive indexing methods
- Slides based on those of Jamie Callan, CMU
- Pattern-matching methods
- Advanced techniques

Indexing with predictive annotation

- Some answers belong to well-defined semantic classes
 - People, places, monetary amounts, telephone numbers, addresses, organizations
- Predictive annotation: index a document with “concepts” or “features” that are expected to be useful in (many) queries
 - E.g. people names, location names, addresses, etc.
- Add additional operators for use in queries
 - E.g. Where does Ellen Vorhees work? “Ellen Vorhees” NEAR/10 *organization

Predictive annotation

In the early part of this century, the only means of transportation for travelers and mail between \textit{<LOCATION> Europe} \textit{<LOCATION>} and \textit{<LOCATION> North America} \textit{<LOCATION>} was by passenger steamship. By \textit{<DATE> 1907} \textit{<DATE>}, the \textit{<COMPANY> Cunard Steamship Company} \textit{<COMPANY>} introduced the largest and fastest steamers in the \textit{<LOCATION> North Atlantic} \textit{<LOCATION>} service: the \textit{<NAME> Lusitania} \textit{<NAME>} and the \textit{<NAME> Mauritania} \textit{<NAME>}. Each had a gross tonnage of \textit{<WEIGHT> 31,000} tons \textit{<WEIGHT>} and a maximum speed of \textit{<SPEED> 26 knots} \textit{<SPEED>}.

Predictive annotation

- **How is annotated text stored in the index?**

 In the early part of this century, the only means of transportation for travelers and mail between <LOCATION, Europe> and <LOCATION, North> was by passenger steamship. By <DATE, 1907>, the <COMPANY, Cunard> <COMPANY, Steamship> <COMPANY, Company> introduced the largest and fastest steamers in the <LOCATION, North> <LOCATION, Atlantic> service the <NAME, Lusitania> and the <NAME, Mauritian>. Each had a gross tonnage of <WEIGHT, 31,000> <WEIGHT, tons> and a maximum speed of <SPEED, 26> <SPEED, knots>.

- Treat <$QA-token, term> as meaning that $QA-token and term occur at the same location in the text
 - Or use phrase indexing approach to index as a single item

Issues for predictive annotation

- **What makes a good QA-token?**
 - Question that would use the token
 - Can be recognized with high reliability (high precision)
 - Occurs frequently enough to be worth the effort

- **How do you want the system to make use of the QA-tokens?**
 - Filtering step?
 - Transform original question into an ad-hoc retrieval question that incorporates QA-tokens and proximity operators?

- **Common approaches to recognizing QA-tokens**
 - Tables, lists, dictionaries
 - Heuristics
 - Hidden Markov models

Advantages and disadvantages

- **Most of the computational cost occurs during indexing**
 - Allows use of more sophisticated methods

- **Annotator has access to complete text of document**
 - Important for recognizing some types of features
 - Must know ahead of time which types of features/concepts are likely to be important
 - Increases size of index considerably
 - E.g. by an order of magnitude if many features

- Used (in varying amounts) by almost all open-domain Q/A systems

Question answering

- **Overview and task definition**
- **History**
- **Open-domain question answering**
- **Basic system architecture**
- **Predictive indexing methods**
 - Slides based on those of Jamie Callan, CMU
- **Advanced techniques**
Simple pattern-based QA

• Observation: there are many questions…but fewer types of questions
• Each type of question can be associated with
 – Expectations about answer string characteristics
 – Strategies for retrieving documents that might have answers
 – Rules for identifying answer strings in documents

Example

• Who is the President of Cornell?
 – Expectation: answer string contains a person name
 • Named entity identification
 – Search query: “president Cornell *PersonName”
 – Rule: “*PersonName, President of Cornell”
 • Matches “…Hunter Rawlings, President of Cornell”
 • Answer = “Hunter Rawlings”

Question analysis

• Input: the question
• Output
 – Search query
 – Answer expectations
 – Extraction strategy
• Requires
 – Identifying named entities
 – Categorizing the question
 – Matching question parts to templates
• Method: pattern-matching
 – Analysis patterns created manually these days…

Question analysis example

• “Who is Elvis?”
 – Question type: “who”
 – Named-entity tagging: “Who is <person-name>Elvis</person-name>”
 – Analysis pattern: if question type = “who” and question contains <person-name> then
 • Search query doesn’t need to contain a *PersonName operator
 • Desired answer probably is a description
 • Likely answer extraction patterns
 – “Elvis, the X”
 » “…Elvis, the king of rock and roll…”
 – “the X Elvis”
 » “the legendary entertainer Elvis”
Question analysis

<table>
<thead>
<tr>
<th>Frequency of question types on an Internet search engine</th>
<th>Relative difficulty of question types</th>
</tr>
</thead>
<tbody>
<tr>
<td>– 42% what</td>
<td>– What is difficult</td>
</tr>
<tr>
<td>– 21% where</td>
<td>– What time…</td>
</tr>
<tr>
<td>– 20% who</td>
<td>– What country…</td>
</tr>
<tr>
<td>– 8% when</td>
<td>– Where is easy</td>
</tr>
<tr>
<td>– 8% why</td>
<td>– Who is easy</td>
</tr>
<tr>
<td>– 2% which</td>
<td>– When is easy</td>
</tr>
<tr>
<td>– 0% how</td>
<td>– Why is hard</td>
</tr>
<tr>
<td></td>
<td>– Which is hard</td>
</tr>
<tr>
<td></td>
<td>– How is hard</td>
</tr>
</tbody>
</table>

Example: What is Jupiter?

1. What We Will Learn from Galileo
2. The Nature of Things: Jupiter’s shockwaves—How a comet’s bombardment has sparked activity on Earth
3. Jupiter-Bound Spacecraft Visits Earth on 6-Year Journey
4. STAR OF THE MAGI THEORIES ECLIPSED?
5. Marketing & Media: Hearst, Burda to Scrap New Astrology Magazine
6. Greece, Italy Conflict On Cause Of Ship Crash That Kills 2, Injures 54
7. Interplanetary Spacecraft To ‘Visit’ Earth With LaserGraphic
8. A List of Events During NASA’s Galileo Mission to Jupiter
9. SHUTTLE ALOFT, SENDS GALILEO ON 6-YEAR VOYAGE TO JUPITER
10. Rebuilt Galileo Probe readied For Long Voyage To Jupiter

Simple pattern-based Q/A: assessment

- **Extremely effective when**
 - Question patterns are predictable
 - Fairly “few” patterns cover the most likely questions
 - Could be several hundred
 - Not much variation in vocabulary
 - Simple word matching works
 - The corpus is huge (e.g., Web)
 - Odds of finding an answer document that matches the vocabulary and answer extraction rule improves

- **Somewhat labor intensive**
 - Patterns are created and tested manually
Common problem: matching questions to answers

- Document word order isn’t exactly what was expected
- Solution: “soft matching” of answer patterns to document text
 - Approach: use distance-based answer selection when no rule matches
 - E.g. for “What is Hunter Rawlings’ address?”
 - Use the address nearest to the words “Hunter Rawlings”
 - User the address in the same sentence as “Hunter Rawlings”

Common problem: matching questions to answers

- Answer vocabulary doesn’t exactly match question vocabulary
- Solution: bridge the vocabulary mismatch
 - Approach: use WordNet to identify simple relationships
 - “astronaut” is a type of “person”
 - “astronaut” and “cosmonaut” are synonyms

Common problem: improving the set of retrieved documents

- Sometimes the IR system can’t find any documents that have answers (even though the right documents are in the corpus)
- Solution: get a broader set of documents
 - Approach: if answer extractor fails to find an answer, kick the question back to the search engine with instructions to widen the search
 - Assumes answer extractors can tell when they fail
 - Approach: use a variety of retrieval strategies to retrieve documents
 - E.g., all words within one sentence, then all words within one paragraph, then within same document, …
 - E.g. add synonyms to query or do query expansion
 - Simple, but much higher computational expense

Common problem: improving answer extraction patterns

- Word sequence patterns have limited power
- Solution: create patterns that use syntactic information
 - Partial syntactic parsing of documents
 - Is this noun the subject or the object of the sentence?
 - Allows more complex patterns
 - Question: “Who shot Kennedy?”
 - “Who” implies a person that should be subject of answer sentence/clause
 - “Kennedy” should be direct object of answer
 - Pattern: <subject> shot Kennedy
 - Matching text: “Oswald shot Kennedy”
Common problem: selecting/ranking the answer

- Multiple answer candidates
- Solutions
 - Features used to represent answer candidates
 - Frequency
 - Distance to question words
 - Location in answer passage(s)
 - ...
 - Selection functions
 - Created manually
 - Learned from training data

Question answering

- Overview and task definition
- History
- Open-domain question answering
- Basic system architecture
- Predictive indexing methods
- Pattern-matching methods

Advanced techniques
- Slides based on Pasca & Harabagiu (SIGIR 2001) and the slides of J. Callan and K. Czuba, CMU

SMU/LCC system

Multi-strategy approach

- State of the art in QA is the SMU/LCC Falcon system
 - Employs informed use of standard IR techniques
 - Use of broad ontology (extended WordNet)
 - Lots of NLP
 - Answer verification
- Similar to most other systems in architecture except for
 - Much more careful tuning of algorithms and resources
 - More sophisticated control of IR and NLP
 - Feedback loops
Question analysis

- Parsing and named entity recognition
- Expected answer type determined by parsing
- Exceptions for “special cases”
 - (Q-P1): What is the definition of <phrase to define>?
 - (Q-P2): What is the definition of <phrase to define>?
 - (Q-P3): Who is <phrase to define> <person name(s)>?

Expected answer types

- Answer types are mapped to named-entity categories that can be recognized in text
- Answer types drive processing of paragraphs
 - Passages need to contain the expected answer type

Paragraph retrieval

- Boolean retrieval with loops
 - Different from multiple queries in that system only uses additional queries when necessary
 - Fewer candidates for analysis components to consider
- Loop 1: query keyword loop
 - Keywords added/dropped to make query more/less specific
- Loop 2: keyword alternations
 - Try morphological variants and synonyms
- Loop 3: semantic alternations
 - Try semantic alternatives
Feedback loops

Answer verification

- Parse passages to create a dependency tree among words
- Attempt to unify logical forms of question and answer text

Assessment

- **Strengths**
 - Controlled use of IR system
 - Query expansion via lexical and semantic equivalents
 - Believed to be the major power of the system
 - Tailored resources (see paper)
 - WordNet, parser, NE identifier, etc.
 - Answer verification
 - Initially thought to be the key component of the system
 - Now... not so clear
- **Weaknesses**
 - Complex system, contribution of each component unclear