Reinforcement Learning

Supervised Learning:
- Training examples: \((x,y)\)
- Direct feedback \(y\) for each input \(x\)

Reinforcement Learning
- Sequence of decisions with eventual feedback
- No teacher that critiques individual actions
- Learn to act and to assign blame/credit to individual actions
- Examples
 - when playing a game, only after many actions final result: win, loss, or draw.
 - Robot fetching bagels from bakery
 - Navigating the Web for collecting all CS pages
 - Control problems (reactor control)

Issues
- Agent knows the full environment a priori vs. unknown environment
- Agent can be passive (watch) or active (explore)
- Feedback (i.e. rewards) in terminal states only; or a bit of feedback in any state
- How to measure and estimate the utility of each action
- Environment fully observable, or partially observable
- Have model of environment and effects of action…or not

Markov Decision Process

Representation of Environment:
- finite set of states \(S\)
- set of actions \(A\) for each state \(s \in S\)

Process
- At each discrete time step, the agent
 - observes state \(s_t \in S\) and then
 - chooses action \(a_t \in A\).
- After that, the environment
 - gives agent an immediate reward \(r_t\)
 - changes state to \(s_{t+1}\) (can be probabilistic)

Model:
- Initial state: \(S_0\)
- Transition function: \(T(s,a,s')\)
 \(T(s,a,s')\) is the probability of moving from state \(s\) to \(s'\) when executing action \(a\).
- Reward function: \(R(s)\)
 \(R(s)\) is a real valued reward that the agent receives for entering state \(s\).

Assumptions
- Markov property: \(T(s,a,s')\) and \(R(s)\) only depend on current state \(s\), but not on any states visited earlier.
- Extension: Function \(R\) may be non-deterministic as well

Example

Each other state has a reward of -0.04.

- move into desired direction with prob 80%
- move 90 degrees to left with prob 10%
- move 90 degrees to right with prob 10%
Policy

- **Definition:**
 - A policy \(\pi \) describes which action an agent selects in each state
 - \(a = \pi(s) \)

- **Utility**
 - For now:
 \[U([s_0, \ldots, s_N]) = \sum_i R(s_i) \]
 - Let \(P([s_0, \ldots, s_N] | \pi, s_0) \) be the probability of state sequence \([s_0, \ldots, s_N]\) when following policy \(\pi \) from state \(s_0 \)
 - Expected utility:
 \[U_\pi(s) = \sum U([s_0, \ldots, s_N]) P([s_0, \ldots, s_N] | \pi, s_0) \]
 - Measure of quality of policy \(\pi \)
 - Optimal policy \(\pi^* \): Policy with maximal \(U_\pi(s) \) in each state \(s \)

Optimal Policies for Other Rewards

- Utility (revisited)
 - Problem:
 - What happens to utility value when
 - either the state space has no terminal states
 - or the policy never directs the agent to a terminal state
 - Utility becomes infinite
 - Solution
 - Discount factor \(0 < \gamma < 1 \)
 - \(U([s_0, \ldots, s_N]) = \sum_i \gamma^i R(s_i) \)
 - Finite utility even for infinite state sequences

Utility (revisited)

- Problem:
 - What happens to utility value when
 - either the state space has no terminal states
 - or the policy never directs the agent to a terminal state
 - Utility becomes infinite

- Solution
 - Discount factor \(0 < \gamma < 1 \)
 - \(U([s_0, \ldots, s_N]) = \sum_i \gamma^i R(s_i) \)
 - Closer rewards count more than awards far in the future
 - Finite utility even for infinite state sequences

Bellman Update (for fixed \(\pi \))

- **Goal:** Solve set of \(n = |S| \) equations (one for each state)
 - \(U_\pi(s_0) = R(s_0) + \gamma \sum \gamma \ T(s_0, \pi(s), s') U_\pi(s') \)
 - \(\ldots \)
 - \(U_\pi(s) = R(s) + \gamma \sum \gamma \ T(s, \pi(s), s') U_\pi(s') \)

- **Algorithm [Policy Evaluation]:**
 - \(i = 0 \); \(U_\pi^0(s) = 0 \) for all \(s \)
 - repeat
 - \(i = i + 1 \)
 - for each state \(s \) in \(S \) do
 - \(U_\pi^i(s) = R(s) + \gamma \sum \gamma \ T(s, \pi(s), s') U_\pi^{i-1}(s') \)
 - endfor
 - until difference between \(U_\pi^i \) and \(U_\pi^{i-1} \) small enough
 - return \(U_\pi^i \)

How to Find the Optimal Policy \(\pi^* \)?

- Is policy \(\pi \) optimal? How can we tell?
 - If \(\pi \) is not optimal, then there exists some state where
 \(\pi(s) \neq \arg \max_a \sum \gamma \ T(s, a, s') U_\pi(s') \)
 - How to find the optimal policy \(\pi^* \)?

<table>
<thead>
<tr>
<th>State</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>←</td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>←</td>
</tr>
</tbody>
</table>
How to Find the Optimal Policy π^*?

Algorithm [Policy Iteration]:
- repeat
 - $U^\pi = \text{PolicyEvaluation}(\pi, S, T, R)$
 - for each state s in S
 - If $\max_a \sum_{s'} T(s, a, s') U^\pi(s') > \sum_{s'} T(s, \pi(s), s') U^\pi(s')$ then
 - $\pi(s) = \arg\max_a \sum_{s'} T(s, a, s') U^\pi(s')$
 - endfor
 - until π does not change any more
- return π

Utility \Leftrightarrow Policy

Equivalence:
- If we know the optimal utility $U(s)$ of each state, we can derive the optimal policy:
 $\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s') U(s')$.
- If we know the optimal policy π^*, we can compute the optimal utility of each state:
 $U(s) = R(s) + \gamma \sum_{s'} T(s, a, s') U(s')$.

Bellman Equation:
$U(s) = R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U(s')$.

\Rightarrow Necessary and sufficient condition for optimal $U(s)$.

Value Iteration Algorithm

• Algorithm [Value Iteration]:
 - $i = 0$; $U^0(s) = 0$ for all s
 - repeat
 - $i = i + 1$
 - for each state s in S
 - $U^i(s) = R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U^{i-1}(s')$
 - endfor
 - until difference between U^i and U^{i-1} small enough
 - return U^i

derive optimal policy via $\pi^*(s) = \arg\max_a \sum_{s'} T(s, a, s') U(s')$.

Convergence of Value Iteration

• Value iteration is guaranteed to converge to optimal U for $0 \leq \gamma < 1$.
• Faster convergence for smaller γ.

Reinforcement Learning

Assumptions we made so far:
- Known state space S
- Known transition model $T(s, a, s')$
- Known reward function $R(s)$
 \Rightarrow not realistic for many real agents

Reinforcement Learning:
- Learn optimal policy with a priori unknown environment
- Assume fully observable environment (i.e. agent can tell its state)
- Agent needs to explore environment (i.e. experimentation)

Passive Reinforcement Learning

Task: Given a policy π, what is the utility function U^π?

- Similar to Policy Evaluation, but unknown $T(s, a, s')$ and $R(s)$

Approach: Agent experiments in the environment

- Trials: execute policy from start state until in terminal state.
Direct Utility Estimation

- **Data:** Trials of the form
 - (1,1) -0.04
 - (1,2) -0.04
 - (1,3) -0.04
 - (1,2) -0.04
 - (1,3) -0.04
 - (2,3) -0.04
 - (3,3) -0.04
 - (3,2) -0.04
 - (3,3) -0.04
 - (4,3) 1.0
 - (1,1) -0.04
 - (1,2) -0.04
 - (1,3) -0.04
 - (2,3) -0.04
 - (3,3) -0.04
 - (3,2) -0.04
 - (3,3) -0.04
 - (4,3) 1.0
 - (1,1) -0.04
 - (2,1) -0.04
 - (3,1) -0.04
 - (3,2) -0.04
 - (4,2) 1.0

- **Idea:**
 - Average reward over all trials for each state independently
 - Supervised Learning Problem

- **Why is this less efficient than necessary?**
 - Ignores dependencies between states

\[U_\pi(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U_\pi(s') \]

Adaptive Dynamic Programming (ADP)

- **Idea:**
 - Run trials to learn model of environment (i.e. T and R)
 - Memorize R(s) for all visited states
 - Estimate fraction of times action a from state s leads to s'
 - Use PolicyEvaluation Algorithm on estimated model

- **Problem?**
 - Can be quite costly for large state spaces
 - For example, Backgammon has 10^{50} states
 - PolicyEvaluation needs to solve linear program with 10^{50} equations and variables.

Temporal Difference (TD) Learning

- **Idea:**
 - Do not learn explicit model of environment!
 - Use update rule that implicitly reflects transition probabilities.

- **Method:**
 - Init $U_\pi(s)$ with $R(s)$ when first visited
 - After each transition, update with
 \[U_\pi(s) = U_\pi(s) + \alpha [R(s) + \gamma U_\pi(s') - U_\pi(s)] \]
 - α is learning rate. α should decrease slowly over time, so that estimates stabilize eventually.

- **Properties:**
 - No need to store model
 - Only one update for each action (not full PolicyEvaluation)

Active Reinforcement Learning

- **Task:** In an a priori unknown environment, find the optimal policy.
 - unknown T(s, a, s') and R(s)
 - Agent must experiment with the environment.

- **Naïve Approach:** “Naïve Active PolicyIteration”
 - Start with some random policy
 - Follow policy to learn model of environment and use ADP to estimate utilities.
 - Update policy using $\pi(s) \leftarrow \text{argmax}_a \sum_{s'} T(s, a, s') U_\pi(s')$

- **Problem:**
 - Can converge to sub-optimal policy!
 - By following policy, agent might never learn T and R everywhere.
 - **Need for exploration!**

Exploration vs. Exploitation

- **Exploration:**
 - Take actions that explore the environment
 - Hope: possibly find areas in the state space of higher reward
 - Problem: possibly take suboptimal steps

- **Exploitation:**
 - Follow current policy
 - Guaranteed to get certain expected reward

- **Approach:**
 - Sometimes take random steps
 - Bonus reward for states that have not been visited often yet

Q-Learning

- **Problem:** Agent needs model of environment to select action via
 \[\text{argmax}_a \sum_{s'} T(s, a, s') U_\pi(s') \]

- **Solution:** Learn action utility function $Q(a,s)$, not state utility function $U(s)$.
 Define $Q(a,s)$ as
 \[U(s) = \max_a Q(a,s) \]
 - Bellman equation with $Q(a,s)$ instead of $U(s)$
 - TD-Update with $Q(a,s)$ instead of $U(s)$

- **Result:** With Q-function, agent can select action without model of environment
 \[\text{argmax}_a Q(a,s) \]
Function Approximation

- **Problem:**
 - Storing Q or U.T.R for each state in a table is too expensive, if number of states is large
 - Does not exploit “similarity” of states (i.e. agent has to learn separate behavior for each state, even if states are similar)

- **Solution:**
 - Approximate function using parametric representation
 - For example: $U(s) = \psi^T \cdot \Phi(s)$
 - $\Phi(s)$ is feature vector describing the state
 - “Material values” of board
 - Is the queen threatened?
 - …