2-Layer Feedforward Networks

Boolean functions:
- Every boolean function can be represented by network with single hidden layer
- But might require exponential (in number of inputs) hidden units

Continuous functions:
- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]

Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

$$o_i = g \left(\sum_{j=1}^{h} w_{hi,j} g \left(\sum_{k=1}^{i} w_{kj,h} x_k \right) \right)$$

Multi-Layer Nets

- Fully connected, two layer, feedforward

Backpropagation Training (Overview)

Training data:
- $(x_1,y),(x_2,y),...,(x_n,y)$, with target labels $y \in \{0,1\}$

Optimization Problem (single output neuron):
- Variables: network weights $w_{i,j}$
- Objective function: $\min_{w_{i,j}} \sum_{t=1}^{n} (y_t - o_t)^2$
- Constraints: none

Algorithm: local search via gradient descent.
- Randomly initialize weights.
- Until performance is satisfactory,
 - Present all training instances. For each one,
 - Calculate actual output. (forward pass)
 - Compute the weight changes that move the output o closer to the desired label y. (backward pass)
 - Add up weight changes and change the weights.

Smooth and Differentiable Threshold Function

- Replace sign function by a differentiable activation function
 - $g(x) = \frac{1}{1+e^{-x}}$

Slope of Sigmoid Function

- $f(x) = \frac{1}{1+e^{-x}}$
- Slope: $\frac{df(x)}{dx} = \frac{d}{dx} \left(\frac{1}{1+e^{-x}} \right)$
- $= (1 + e^{-x})^{-2} e^{-x}$
- $= (1+e^{-x})(1+e^{-x})^{-1}$
- $= f(x) \frac{e^{-x}}{1+e^{-x}}$
- $= f(x)(1 - f(x))$

View in terms of output at node:
- $o_j(1 - o_j)$

Backpropagation Training (Detail)

- Input: training data $(x_1,y),(x_2,y),...,(x_n,y)$, learning rate parameter α.
- Initialize weights.
- Until performance is satisfactory,
 - For each training instance,
 - Compute the resulting output
 - Compute $\beta_i = (y_i - o_i)$ for nodes in the output layer
 - Compute $\beta_j = \sum_{k} w_{kj,o} a_k (1 - o_k) \beta_k$ for all other nodes.
 - Compute weight changes for all weights using
 $\Delta w_{i,j} = \alpha \beta_j$
 - Add up weight changes for all training instances, and update the weights accordingly.
 $w_{i,j} \leftarrow w_{i,j} + \alpha \sum \Delta w_{i,j}$
Hidden Units

- Hidden units are nodes that are situated between the input nodes and the output nodes.
- Hidden units allow a network to learn non-linear functions.
- Hidden units allow the network to represent combinations of the input features.
- Given too many hidden units, a neural net will simply memorize the input patterns (overfitting).
- Given too few hidden units, the network may not be able to represent all of the necessary generalizations (underfitting).

How long should you train the net?

- The goal is to achieve a balance between correct responses for the training patterns and correct responses for new patterns. (That is, a balance between memorization and generalization).
- If you train the net for too long, then you run the risk of overfitting.
- In general, the network is trained until it reaches an acceptable error rate (e.g. 95%).

Design Decisions

- Choice of learning rate r
- Stopping criterion – when should training stop?
- Network architecture
 - How many hidden layers? How many hidden units per layer?
 - How should the units be connected? (Fully? Partial? Use domain knowledge?)
- How many restarts (local optima) of search to find good optimum of objective function?