A “Cornell AI Student” Agent

Search problem

access to environment through sensors: visual, aural, touch, etc.

available actions: talk, walk, etc.

Slide CS472 – Problem-Solving as Search 1

A Simple Reflex Agent

Slide CS472 – Problem-Solving as Search 2
Agents with Internal State

- Agent
- Environment
- Sensors
- Effectors
- State
- How the world evolves
- What the world is like now
- What my actions do
- Condition–action rules
- What action I should do now
- How the world evolves

Goal-Based Agents

- Agent
- Environment
- Sensors
- Effectors
- State
- How the world evolves
- What the world is like now
- What my actions do
- Goal
- What it will be like if I do action A
- What should I do now

Slide CS472 – Problem-Solving as Search 3

Slide CS472 – Problem-Solving as Search 4
Human Problem Solving

Search is a central topic in AI
— Automated reasoning is a natural search task
— More recently: Given that almost all AI formalisms (planning, learning, etc.) are NP-Complete or worse, some from of search is generally unavoidable (no “smarter” alg. available).

Defining a Search Problem

State space — described by an initial state and the set of possible actions available (operators). A path is any sequence of actions that lead from one state to another.

Goal test — applicable to a single state to determine if it is the goal state.

Path cost — a function that assigns a cost to a path; relevant if more than one path leads to the goal, and we want the shortest path.
The 8-Puzzle

States: Specifies the location of each of the eight tiles in one of the nine squares

Operators: blank moves left, right, up, down

Goal test: state matches the goal configuration

Path cost: each step costs 1, so path cost = length of path

Cryptarithmetic

\[
\begin{array}{c}
\text{SEND} \\
+ \text{MORE} \\
\hline \\
\text{MONEY}
\end{array}
\]

Find substitution of digits for letters such that the resulting sum is arithmetically correct.

Each letter must stand for a different digit.
Cryptarithmetic, cont.

States: a (partial) assignment of digits to letters.

Operators: the act of assigning digits to letters.

Goal test: all letters have been assigned digits and sum is correct.

Path cost: zero. All solutions are equally valid.

Solving a Search Problem: State Space Search

Input:

- Start state
- Goal state or goal test
- Operators

Output: legal sequence of states from initial state to goal state.

Search space is not stored in its entirety by the computer.
Generic Search Algorithm

L = make-queue/stack(initial-state)
loop
 node = remove-front(L)
 if goal-test(node) = true return(node)
 S = successors(node, operators)
 insert(S,L)
until L is empty
return failure

Search procedure defines a search tree

root node — initial state
children of a node — successors of the node
fringe of tree — L: nodes not yet expanded

stack: Depth-First Search (DFS).
queue: Breadth-First Search (DFS).

Search strategy — algorithm for deciding which leaf node to expand next.
Solving the 8-Puzzle

What would the search tree look like after the start state was expanded?

Evaluating a Search Strategy

Completeness: is the strategy guaranteed to find a solution when there is one?

Time Complexity: how long does it take to find a solution?

Space Complexity: how much memory does it need?

Optimality: does the strategy find the highest-quality solution when there are several different solutions?
Uninformed search: BFS

Consider paths of length 1, then of length 2, then of length 3, then of length 4,....

Time and Memory Requirements for BFS – $O(b^d)$
Let $b =$ branching factor, $d =$ solution depth, then the maximum number of nodes expanded is: $1 + b + b^2 + ... + b^d$

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 millisecond</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 seconds</td>
<td>11 kilobytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 minutes</td>
<td>111 megabytes</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 gigabytes</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 terabytes</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3500 years</td>
<td>11,111 terabytes</td>
</tr>
</tbody>
</table>

Slide CS472 – Problem-Solving as Search 15

Slide CS472 – Problem-Solving as Search 16
BFS
Memory is serious problem!
DFS a much better alternative.

Exponential time also a factor, but we’ll see later on that a few more “tricks” enable us to effectively search huge state spaces.
E.g., chess: 10^{160} / planning: 10^{30}.

Uniform-cost Search
Use BFS, but always expand the lowest-cost node on the fringe as measured by path cost $g(n)$.

Requirement: $g(\text{Successor}(n)) \geq g(n)$
Example

Uninformed search: DFS
DFS vs. BFS

<table>
<thead>
<tr>
<th></th>
<th>Complete?</th>
<th>Optimal?</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFS</td>
<td>YES</td>
<td>“YES”</td>
<td>b^d</td>
<td>b^d</td>
</tr>
<tr>
<td>DFS</td>
<td>finite depth</td>
<td>NO</td>
<td>b^m</td>
<td>b^m</td>
</tr>
</tbody>
</table>

Time

- $m = d$ — DFS typically wins
- $m > d$ — BFS might win
- m is infinite — BFS probably will do better

Space

DFS almost always beats BFS

Which search should I use?

Depends on the problem.

If there may be infinite paths, then depth-first is probably bad. If goal is at a known depth, then depth-first is good.

If there is a large (possibly infinite) branching factor, then breadth-first is probably bad.

(Could try **nondeterministic** search. Expand an open node at random.)
Iterative Deepening [Korf 1985]

Idea:
Use an artificial depth cutoff, c.

If search to depth c succeeds, we’re done. If not, increase c by 1 and start over.

Each iteration searches using DFS.
Space requirements? Same as DFS. Each search is just a DFS.

Time requirements. Would seem very expensive!! **BUT** not much different from single BFS or DFS to depth \(d \).

Reason: Almost all work is in the final couple of layers. E.g., binary tree: \(1/2 \) of the nodes are in the bottom layer. With \(b=10 \), \(9/10 \)th of the nodes in final layer!

So, repeated runs are on much smaller trees (i.e., exponentially smaller).

Example:

\(b=10, \ d=5 \), the number of nodes expanded in a DFS

\[
1 + 10 + 100 + 1000 + 10,000 + 100,000 = 111,111
\]

Bottom level is expanded once, second to bottom twice...

total number of expansions:

\[
(d + 1)1 + (d)b + (d - 1)b^2 + \ldots + 2b^{d-1} + b^d =
\]

\[
6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
\]

only about 11% more!

Ratio of ID to DFS: \((b+1)/(b-1) \).

Cost of repeating the work at shallow depths is not prohibitive.
Cost of Iterative Deepening

space: $O(bd)$ as in DFS, time: $O(b^d)$

<table>
<thead>
<tr>
<th>b</th>
<th>ratio of ID to DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>1.08</td>
</tr>
<tr>
<td>100</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Bidirectional Search

Slide CS472 – Problem-Solving as Search 27
• Search forward from the start state and backward from the goal state simultaneously and stop when the two searches meet the middle.

• If branching factor = b from both directions, and solution exists at depth d, then need only $O(2b^{d/2}) = O(b^{d/2})$ steps.

• Example $b = 10$, $d = 6$ then BFS needs 1,111,111 nodes and bidirectional search needs only 2,222.

• Issues:
 – What does it mean to search backwards from a goal?
 – What if there is more than one goal state? (chess).
Comparing Search Strategies

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
<th>Bidirectional (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
<td>$b^{d/2}$</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Complete?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Cryptarithmetic

Consider search space for cryptarithmetic.

DFS (depth-first search)

Is this (DFS) how humans tackle the problem?

And if not, what do humans do?
Human problem solving appears much more sophisticated!

For example, we derive new constraints on the fly.
In a sense, we try to solve problems with little
or no search!

In example, we can immediately derive that $M = 1$.
It then follows that $S = 8$ or $S = 9$. Etc. (derive more!)

Capturing such human problem solving strategies is
surprisingly difficult. For example, how do we know
to first consider assigning M?

Constraint programming techniques do provide some steps
towards this kind of problem solving (next lecture).

Fortunately, computers are very good at fast search!
Search speed can compensate for lack of higher-level
insights into the problem structure.
Constraint Satisfaction Problems (CSP)

A powerful representation for (discrete) search problems. Led to “constraint programming”.

A Constraint Satisfaction Problem (CSP) is defined by:

- X is a set of n variables X_1, X_2, \ldots, X_n,
 - each defined by its finite domain D_1, D_2, \ldots, D_n.
- C is a set of constraints C_1, C_2, \ldots, C_m.

Constraints

A constraint C_i restricts the set of possible values that can be assigned to the variables in the constraint. In other words, a constraint specifies which values are compatible for the variables in the constraint.

A solution is an assignment of values to the variables that satisfies all constraints.
Send More Money as a CSP

Variables:
\[S = \{0, \ldots, 9\}; \quad E = \{0, \ldots, 9\}; \]
\[N = \{0, \ldots, 9\}; \quad D = \{0, \ldots, 9\}; \quad M = \{0, \ldots, 9\}; \]
\[O = \{0, \ldots, 9\}; \quad R = \{0, \ldots, 9\}; \quad Y = \{0, \ldots, 9\}; \]

Constraints:
\[
\begin{align*}
\text{send} &= 1000 \times S + 100 \times E + 10 \times N + D; \\
\text{more} &= 1000 \times M + 100 \times O + 10 \times R + E; \\
\text{money} &= 10000 \times M + 1000 \times O + 100 \times N + 10 \times E + Y; \\
\text{send} + \text{more} &= \text{money};
\end{align*}
\]
each letter has a different digit (\(S \neq E, S \neq N \), etc);

Map-Coloring Problem

Slide CS472 – Problem-Solving as Search 37

Slide CS472 – Problem-Solving as Search 38
Constraint Satisfaction Problems (CSP)

For a given CSP the problem is one of the following:

- find all solutions
- find one solution
 - just a feasible solution, or
 - a “reasonably good” feasible solution, or
 - the optimal solution given an objective
- determine if a solution exists

How to View a CSP as a Search Problem?

Initial State – state in which all the variables are unassigned.

Operators – assign a value to a variable from a set of possible values.

Goal test – check if all the variables are assigned and all the constraints are satisfied.
Branching Factor

Hypothesis 1 – any unassigned variable at a given state can be assigned a value by an operator: branching factor as high as sum of size of all domains.

Better approach – since order of variable assignment not relevant, consider as the successors of a node just the different values of a *single* unassigned variable: max branching factor = max size of domain.

Maximum Depth of Search Tree

n the number of variables; all the solutions are at depth n.

What are the implications in terms of using DFS vs. BFS?

CSP – Goal Decomposed into Constraints

How to exploit it?

Backtracking only insert successors if *consistent* with constraints.

Constraint propagation “looking ahead” to remove inconsistencies.
“Looking ahead”

- **Forward Checking** — each time variable is instantiated, from domains of the uninstantiated variables all of those values that conflict with current variable assignments.
- **Arc Consistency** — state is arc-consistent, if every variable has some value that is consistent with each of its constraints (consider pairs of variables)
- **K-Consistency** generalizes arc-consistency.
 Consistency of groups of K variables.

Branching:

Most-constrained variable heuristic: choose the variable with the *fewest* possible values.

Most-constraining variable heuristic: assign a value to the variable that is involved in the largest number of constraints on other unassigned variables.

Least-constraining value heuristic: choose a value that rules out the smallest number of values in variables connected to the current variable by constraints.
Dramatic recent progress in Constraint Satisfaction.

For example, we can now handle problems with 10,000 to 100,000 variables, and up to 1,000,000 constraints.