Foundation of AI

About the course

Lecture and Project

CS4700: Foundations of Artificial Intelligence
- Lecture
- Introduction to AI techniques
- Agents, Search, CSP, Machine Learning, Planning, Reasoning, Knowledge Representation, Reinforcement Learning

CS4701: Practicum in Artificial Intelligence
- Project
- Hands-on experience with AI methods
- Project management: Software engineering, project planning, deadlines, code reviews, teamwork, presentation, documentation, reporting, demoing
- Meets separate from CS4700
- CS4700 is co-requisite
Logistics

Where: Hollister B14
When: Mon, Wed, Fri 11:15-12:05
Professor: Hod Lipson, Mechanical & Aerospace Eng., Comp. & Information Science
 Email: hod.lipson@cornell.edu
 URL: www.mae.cornell.edu/lipson
 Office Hours: 242 Upson, Tue Thu, 1-4pm or by appointment
Course web site: www.cs.cornell.edu/courses/CS4700/2011fa/

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Office hours & location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hod Lipson</td>
<td>hod.lipson@cornell.edu</td>
<td>Tuesday + Thursday, 1-4pm, Upson 242</td>
</tr>
<tr>
<td>Jason Yosinski</td>
<td>yosinski@cs.cornell.edu</td>
<td>TBD, Upson 328</td>
</tr>
<tr>
<td>Nikos Karampatziakis</td>
<td>nk@cs.cornell.edu</td>
<td>TBD, Upson 328</td>
</tr>
<tr>
<td>Yue Gao</td>
<td>ygao@cs.cornell.edu</td>
<td>TBD, Upson 328</td>
</tr>
</tbody>
</table>

Questions: Send email to
cs4700ta-l@lists.cs.cornell.edu
Foundations of Artificial Intelligence

CS4700 - Fall 2011 - Hod Lipson
Cornell University

This course uses an LMS. If you do not already have one, please get one and register it.
This course uses CMS. If you are registered for the course but do not have an account, please contact the head TA to be added.

Time and Place

Monday, Wednesday, Friday, 11:15am - 12:05pm. Location: HLS 814
First lecture: Wednesday, August 24, 2011
Last lecture: Friday, December 2, 2011
Midterm (in-class): Friday, October 7, 2011. Open books and notes. Non-programmable calculators are allowed, but no phones, laptops, or any other electronic devices. Topics: Informed and uninformed search, local and adversarial search, CBP, Markov models, Reinforcement learning
Final Exam: Fri, 9 Dec, 2011 2:00 PM - 4:30 PM. location TBD. Open books and notes. Non-programmable calculators are admitted, but no phones, laptop, or any other electronic devices. If you are unable to make it please notify the instructor well in advance with justification email with subject line: "CS4700: Request for final exam makeup"

Course Staff and office hours

Instructor: Hod Lipson
Head TA: Jason Yosinski

<table>
<thead>
<tr>
<th>Name</th>
<th>email</th>
<th>Office hours & location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hod Lipson</td>
<td>hod.lipson@cornell.edu</td>
<td>Tuesday - Thursday, 1-4pm, Upson 242</td>
</tr>
<tr>
<td>Jason Yosinski</td>
<td>jasony@cs.cornell.edu</td>
<td>TBD, Upson 328</td>
</tr>
<tr>
<td>Nikos Karampatzakis</td>
<td>nikosk@cs.cornell.edu</td>
<td>TBD, Upson 328</td>
</tr>
<tr>
<td>Yue Gao</td>
<td>yueg@cs.cornell.edu</td>
<td>TBD, Upson 329</td>
</tr>
</tbody>
</table>

Mailing List

For questions email cs4700x-"at"lists.cs.cornell.edu. Note: Remove the extra spaces. The list is set to mail all the TAs and Prof. Lipson – you will get the best response time by using the facility, and all the TAs will know the question you asked and the answer you receive.

Syllabus

Problem solving

- principles of search, uninformed search, informed ("heuristic") search, constraint satisfaction, local search, genetic algorithms, game playing

Learning

- inductive learning, decision tree learning, statistical approaches, support vector machines, kernels, neural networks

Knowledge representation and reasoning

- knowledge bases and inference, propositional and first-order logic, theorem-proving, planning

Natural language understanding

- syntactic processing, ambiguity resolution, text understanding
Grading

• 15%: Midterm
• 35-45%: Final Exam
 – percentage depends on participation
• 40%: Homework (~6 assignments)
• 0-10%: Participation (optional)

Textbook

Prerequisites

Introduction to Algorithms 2nd Edition or later
Elementary Data Structures, Hash tables, Binary Search trees, and Elementary Graph algorithms
Examinations

• Midterm
 – Fri Oct 8, in class

• Final
 – Fri, 9 Dec 2011 2:00 PM - 4:30 PM, location TBD

• Open book & notes. Closed electronics.

Class notes, schedule, readings

• Available from course web site

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 8/25</td>
<td>About the course</td>
<td>R&N Ch. 1.2</td>
</tr>
<tr>
<td>Fri 8/27</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Mon 8/30</td>
<td>cont.</td>
<td>R&N Ch. 3</td>
</tr>
<tr>
<td>Wed 8/31</td>
<td>Agents and Problem-Solving as Search</td>
<td>R&N 4.1-4.2</td>
</tr>
<tr>
<td>Fri 9/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 9/6</td>
<td>Labor day break</td>
<td></td>
</tr>
<tr>
<td>Wed 9/8</td>
<td>Informed Search</td>
<td></td>
</tr>
<tr>
<td>Fri 9/10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mon 9/13</td>
<td>Intro to NLP</td>
<td></td>
</tr>
<tr>
<td>Wed 9/15</td>
<td></td>
<td>R&N Ch. 4.3, and p. 120</td>
</tr>
<tr>
<td>Fri 9/17</td>
<td>Local Search</td>
<td></td>
</tr>
<tr>
<td>Mon 9/18</td>
<td>Constraint Satisfaction</td>
<td>R&N Ch. 5</td>
</tr>
<tr>
<td>Wed 9/22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Homework

- About 6 assignments
- One week to complete, one week to grade
- Submit paper copies at the beginning of class
- Submit PDF copies in CMS
- Three slack days
Academic Integrity

• Your assignments should reflect your individual work
 – Inform instructor immediately if solutions is available online or are being circulated
 – You must explicitly identify anything you did not code/write yourself

• OK
 – To discuss concepts with peers
 – To use standard data-structure libraries (trees, hash tables)

• Not OK
 – To copy or share code
 – To compare results
 – To use AI libraries (search algorithms, DFS, BFS)

Review classes on demand

• Before prelim and occasionally as needed
 – About once every two weeks

• Would you like a review on a topic?
 – please ask
Clicker

Register at: http://atc.cit.cornell.edu/course/polling/clickers.cfm

Skin Your iClicker Today

Enter to Win!! Free
Test Question

• A: I like AI
• B: I will like AI
• C: I have always liked AI
• D: All of the above
• E: Whatever

Optional 10% Participation grade determined using clickers

Participation = 10%
Participation Correlated with Higher Grade
Competency Requirement

• PhD students fulfilling competency requirement can do one of the following:
 – If you change your mind, change by 3rd week

• Enroll in the course
 – Do all assignments and exams
 – Grade will count and appear in transcript

• Or just take the final
 – May enroll as “audit”, if desired
 – Welcome to do assignments and midterm for practice, but they won’t count

CSUG Accounts

Lab door, MSDNA, and Net-Print will be activated shortly

http://www.csuglab.cornell.edu/
Wiki

http://fabathome.mae.cornell.edu/cs4700

http://lnx-bsp.net/java/chichk.html