CS4670 / 5670: Computer Vision
Noah Snavely

Lecture 6: Harris corners

Announcements

• Assignment 1 due **Sunday**
• Turn-in by 11:59pm Sunday evening
• Demo sessions on Monday, signup on CMS
• Artifact due by Wednesday night
Announcements

- Additional TAs:
 - Kyle Wilson
 - Gagik Hakobyan

Reading

- Szeliski: 4.1
Feature extraction: Corners and blobs

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in any direction causes a big change

“flat” region: no change in all directions
“edge”: no change along the edge direction
“corner”: significant change in all directions

Credit: S. Seitz, D. Frolova, D. Simakov
Harris corner detection: the math

Consider shifting the window W by (u,v)
- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD “error” $E(u,v)$:

$$E(u, v) = \sum_{(x,y) \in W} (I(x + u, y + v) - I(x, y))^2$$

Harris corner detection: the math

Using the small motion assumption, replace I with a linear approximation

(Shorthand: $I_x = \frac{\partial I}{\partial x}$)

$$E(u, v) = \sum_{(x,y) \in W} (I(x + u, y + v) - I(x, y))^2$$

\[\approx \sum_{(x,y) \in W} (I(x, y) + I_x(x, y)u + I_y(x, y)v - I(x, y))^2 \]

\[\approx \sum_{(x,y) \in W} (I_x(x, y)u + I_y(x, y)v)^2 \]
Corner detection: the math

\[E(u, v) \approx \sum_{(x,y)\in W} (I_x(x,y)u + I_y(x,y)v)^2 \]

\[\approx \sum_{(x,y)\in W} (I_x^2u^2 + 2I_xI_yuv + I_y^2v^2) \]

\[\approx Au^2 + 2Buv + Cv^2 \]

\[A = \sum_{(x,y)\in W} I_x^2 \quad B = \sum_{(x,y)\in W} I_xI_y \quad C = \sum_{(x,y)\in W} I_y^2 \]

• Thus, \(E(u,v) \) is locally approximated as a quadratic form.

The second moment matrix

The surface \(E(u,v) \) is locally approximated by a quadratic form.

\[E(u,v) \approx Au^2 + 2Buv + Cv^2 \]

\[\approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y)\in W} I_x^2 \]

\[B = \sum_{(x,y)\in W} I_xI_y \]

\[C = \sum_{(x,y)\in W} I_y^2 \]

Let’s try to understand its shape.
\[E(u, v) \approx \begin{bmatrix} u \\ v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[A = \sum_{(x,y) \in W} I_x^2 \]
\[B = \sum_{(x,y) \in W} I_x I_y \]
\[C = \sum_{(x,y) \in W} I_y^2 \]

Horizontal edge: \(I_x = 0 \)

\[H = \begin{bmatrix} 0 & 0 \\ 0 & C \end{bmatrix} \]

Vertical edge: \(I_y = 0 \)

\[H = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \]
General case

The shape of H tells us something about the distribution of gradients around a pixel.

We can visualize H as an ellipse with axis lengths determined by the eigenvalues of H and orientation determined by the eigenvectors of H.

Ellipse equation:

$$
[u \ v] \ H \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}
$$

Quick eigenvalue/eigenvector review

The eigenvectors of a matrix A are the vectors x that satisfy:

$$
A x = \lambda x
$$

The scalar λ is the eigenvalue corresponding to x.

- The eigenvalues are found by solving:

$$
det(A - \lambda I) = 0
$$

- In our case, $A = H$ is a 2x2 matrix, so we have:

$$
det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0
$$

- The solution:

$$
\lambda_{\pm} = \frac{1}{2} \left((h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right)
$$

Once you know λ, you find x by solving:

$$
\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0
$$
Corner detection: the math

\[E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & B \\ B & C \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \]

\[H \]

\[Hx_{\text{max}} = \lambda_{\text{max}} x_{\text{max}} \]
\[Hx_{\text{min}} = \lambda_{\text{min}} x_{\text{min}} \]

Eigenvalues and eigenvectors of H
- Define shift directions with the smallest and largest change in error
- \(x_{\text{max}} \) = direction of largest increase in \(E \)
- \(\lambda_{\text{max}} \) = amount of increase in direction \(x_{\text{max}} \)
- \(x_{\text{min}} \) = direction of smallest increase in \(E \)
- \(\lambda_{\text{min}} \) = amount of increase in direction \(x_{\text{min}} \)

Corner detection: the math

How are \(\lambda_{\text{max}}, x_{\text{max}}, \lambda_{\text{min}}, \) and \(x_{\text{min}} \) relevant for feature detection?
- What’s our feature scoring function?
Corner detection: the math

How are λ_{max}, x_{max}, λ_{min}, and x_{min} relevant for feature detection?

- What’s our feature scoring function?

Want $E(u,v)$ to be large for small shifts in all directions

- the minimum of $E(u,v)$ should be large, over all unit vectors $[u \ v]$
- this minimum is given by the smaller eigenvalue (λ_{min}) of H

Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

- λ_1 and λ_2 are small; E is almost constant in all directions
- λ_1 and λ_2 are large, $\lambda_1 \sim \lambda_2$; E increases in all directions
- $\lambda_1 >> \lambda_2$; “Flat” region
- $\lambda_1 >> \lambda_2$; “Edge”
- $\lambda_1 >> \lambda_2$; “Corner”
Corner detection summary

Here’s what you do

- Compute the gradient at each point in the image
- Create the H matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response ($\lambda_{\text{min}} > \text{threshold}$)
- Choose those points where λ_{min} is a local maximum as features
The Harris operator

λ_{min} is a variant of the “Harris operator” for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

$$= \frac{\text{determinant}(H)}{\text{trace}(H)}$$

- The trace is the sum of the diagonals, i.e., $\text{trace}(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the “Harris Corner Detector” or “Harris Operator”
- Lots of other detectors, this is one of the most popular
Harris detector example

f value (red high, blue low)
Threshold ($f > \text{value}$)

Find local maxima of f
Harris features (in red)

Weighting the derivatives

• In practice, using a simple window W doesn’t work too well

$$H = \sum_{(x,y) \in W} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

• Instead, we’ll *weight* each derivative value based on its distance from the center pixel

$$H = \sum_{(x,y) \in W} w_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
Questions?

Image transformations

- Geometric
 - Rotation
 - Scale

- Photometric
 - Intensity change
Harris Detector: Invariance Properties

• Rotation

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response is invariant to image rotation

Harris Detector: Invariance Properties

• Affine intensity change: $I \rightarrow aI + b$

✓ Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
✓ Intensity scale: $I \rightarrow aI$

Partially invariant to affine intensity change