Pipeline and Rasterization

CS465 Lecture 15

The graphics pipeline

- The standard approach to object-order graphics
- Many versions exist
 - software, e.g., Pixar’s REYES architecture
 - many options for quality and flexibility
 - hardware, e.g., graphics cards in PCs
 - amazing performance: millions of triangles per frame
- We’ll focus on an abstract version of hardware pipeline
- “Pipeline” because of the many stages
 - very parallelizable
 - leads to remarkable performance of graphics cards (many times the flops of the CPU at ~1/5 the clock speed)

Pipeline overview

you are here ➔ APPLICATION
COMMAND STREAM ➔ GEOMETRY PROCESSING
TRANSFORMED GEOMETRY ➔ RASTERIZATION
FRAGMENTS ➔ FRAGMENT PROCESSING
FRAMEBUFFER IMAGE ➔ DISPLAY

Primitives

- Points
- Line segments
 - and chains of connected line segments
- Triangles
- And that’s all!
 - Curves? Approximate them with chains of line segments
 - Polygons? Break them up into triangles
 - Curved regions? Approximate them with triangles
- Trend has been toward minimal primitives
 - simple, uniform, repetitive: good for parallelism
Rasterization

- First job: enumerate the pixels covered by a primitive
 - simple, aliased definition: pixels whose centers fall inside
- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices
 - will see applications later on

Rasterizing lines

- Define line as a rectangle
- Specify by two endpoints
- Ideal image: black inside, white outside

Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels
Point sampling

- Approximate rectangle by drawing all pixels whose centers fall within the line
- Problem: sometimes turns on adjacent pixels

Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner
Bresenham lines (midpoint alg.)

- Point sampling unit width rectangle leads to uneven line width
- Define line width parallel to pixel grid
- That is, turn on the single nearest pixel in each column
- Note that 45° lines are now thinner

Algorithms for drawing lines

- line equation: \(y = b + m \cdot x \)
- Simple algorithm: evaluate line equation per column
- W.l.o.g. \(x_0 < x_1 \);
 \(0 \leq m \leq 1 \)

 for \(x = \text{ceil}(x_0) \) to \(\text{floor}(x_1) \)

 \(y = b + m \cdot x \)

 output \((x, \text{round}(y))\)

Optimizing line drawing

- Multiplying and rounding is slow
- At each pixel the only options are E and NE
- \(d = m(x + 1) + b - y \)
- \(d > 0.5 \) decides between E and NE
Optimizing line drawing

- \(d = m(x + 1) + b - y \)
- Only need to update \(d \) for integer steps in \(x \) and \(y \)
- Do that with addition
- Known as “DDA” (digital differential analyzer)

Midpoint line algorithm

\[
x = \text{ceil}(x_0) \\
y = \text{round}(m^\ast x + b) \\
d = m^\ast (x + 1) + b - y \\
\text{while } x < \text{floor}(x_1) \\
\quad \text{if } d > 0.5 \\
\quad \quad y += 1 \\
\quad \quad d -= 1 \\
\quad x += 1 \\
\quad d += m \\
\text{output}(x, y)
\]

Linear interpolation

- We often attach attributes to vertices
 - e.g. computed diffuse color of a hair being drawn using lines
 - want color to vary smoothly along a chain of line segments
- Recall basic definition
 - 1D: \(f(x) = (1 - \alpha) y_0 + \alpha y_1 \)
 - where \(\alpha = (x - x_0) / (x_1 - x_0) \)
- In the 2D case of a line segment, alpha is just the fraction of the distance from \((x_0, y_0)\) to \((x_1, y_1)\)

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate
Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

Alternate interpretation

- We are updating d and α as we step from pixel to pixel
 - d tells us how far from the line we are
 - α tells us how far along the line we are
- So d and α are coordinates in a coordinate system oriented to the line

Linear interpolation

- Pixels are not exactly on the line
- Define 2D function by projection on line
 - this is linear in 2D
 - therefore can use DDA to interpolate

Alternate interpretation

- View loop as visiting all pixels the line passes through
 - Interpolate d and α for each pixel
 - Only output frag. if pixel is in band
- This makes linear interpolation the primary operation
Pixel-walk line rasterization

\[x = \text{ceil}(x_0) \]
\[y = \text{round}(m \times x + b) \]
\[d = m \times x + b - y \]
while \(x < \text{floor}(x_1) \)
 if \(d > 0.5 \)
 \[y = y + 1; d = d - 1; \]
 else
 \[x = x + 1; d = d + m; \]
 if \(-0.5 \leq d \leq 0.5\)
 output\((x, y)\)

Rasterizing triangles

- The most common case in most applications
 - with good antialiasing can be the only case
 - some systems render a line as two skinny triangles
- Triangle represented by three vertices
- Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 - walk from pixel to pixel over (at least) the polygon’s area
 - evaluate linear functions as you go
 - use those functions to decide which pixels are inside

Rasterizing triangles

- Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set
Incremental linear evaluation

- A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]
- Linear functions are efficient to evaluate on a grid:
 \[q(x+1, y) = c_x (x+1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y+1) = c_x x + c_y (y+1) + c_k = q(x, y) + c_y \]

- \(c_x = .005; c_y = .005; c_k = 0 \)
 (image size 100x100)

Rasterizing triangles

- Summary
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
 3. using extra parameters to determine fragment set

Defining parameter functions

- To interpolate parameters across a triangle we need to find the \(c_x, c_y, \) and \(c_k \) that define the (unique) linear function that matches the given values at all 3 vertices
 - this is 3 constraints on 3 unknown coefficients:
 \[c_x x_0 + c_y y_0 + c_k = q_0 \]
 \[c_x x_1 + c_y y_1 + c_k = q_1 \]
 \[c_x x_2 + c_y y_2 + c_k = q_2 \]
 (each states that the function agrees with the given value at one vertex)
 - leading to a 3x3 matrix equation for the coefficients:
 \[
 \begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y \\
 c_k \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2 \\
 \end{bmatrix}
 \] (singular iff triangle is degenerate)
Defining parameter functions

- More efficient version: shift origin to \((x_0, y_0)\)

 \[
 q(x, y) = c_x(x - x_0) + c_y(y - y_0) + q_0
 \]

 \[
 q(x_1, y_1) = c_y(x_1 - x_0) + c_y(y_1 - y_0) + q_0 = q_1
 \]

 \[
 q(x_2, y_2) = c_y(x_2 - x_0) + c_y(y_2 - y_0) + q_0 = q_2
 \]

 - now this is a 2x2 linear system (since \(q_0\) falls out):

 \[
 \begin{bmatrix}
 (x_1 - x_0) & (y_1 - y_0) \\
 (x_2 - x_0) & (y_2 - y_0)
 \end{bmatrix}
 \begin{bmatrix}
 c_x \\
 c_y
 \end{bmatrix}
 = \begin{bmatrix}
 q_1 - q_0 \\
 q_2 - q_0
 \end{bmatrix}
 \]

 - solve using Cramer's rule (see Shirley):

 \[
 c_x = \frac{(\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
 \]

 \[
 c_y = \frac{(\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
 \]

Interpolating several parameters

```c
lininterp(xl, xh, yl, yh, n, xo, yo, q0[]),
x1, y1, q1[], x2, y2, q2[])
```

// setup
for k = 0 to n-1
 // compute cx[k], cy[k], qRow[k]
 // from q0[k], q1[k], q2[k]

// traversal
for x = yl to yh {
 for x = x1 to xh {
 output(x, y, qPix);
 for k = 1 to n, qPix[k] += cx[k];
 }
 for k = 1 to n, qRow[k] += cy[k];
}
```

Rasterizing triangles

- Summary
  
  1. evaluation of linear functions on pixel grid
  2. functions defined by parameter values at vertices
  3. using extra parameters to determine fragment set
Clipping to the triangle

- Interpolate three barycentric coordinates across the plane
  - each barycentric coord is 1 at one vert. and 0 at the other two
- Output fragments only when all three are > 0.

Barycentric coordinates

- A coordinate system for triangles
  - algebraic viewpoint:
    \[ p = \alpha a + \beta b + \gamma c \]
    \[ \alpha + \beta + \gamma = 1 \]
  - geometric viewpoint (areas):
- Triangle interior test:
  \[ \alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]

Barycentric coordinates

- A coordinate system for triangles
  - geometric viewpoint: distances
    \[ \alpha = 1 - \beta - \gamma \]
    \[ p = a + \beta(b - a) + \gamma(c - a) \]
  - linear viewpoint: basis of edges
    \[ \beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]

Barycentric coordinates

- Linear viewpoint: basis for the plane
Edge equations

- In plane, triangle is the intersection of 3 half spaces

\[(x - a) \cdot (b - a)^\perp > 0\]
\[(x - b) \cdot (c - b)^\perp > 0\]
\[(x - c) \cdot (a - c)^\perp > 0\]
**Walking edge equations**

- We need to update values of the three edge equations with single-pixel steps in $x$ and $y$
- Edge equation already in form of dot product
- Components of vector are the increments

**Pixel-walk (Pineda) rasterization**

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment

**Rasterizing triangles**

- Exercise caution with rounding and arbitrary decisions
  - Need to visit these pixels once
  - But it’s important not to visit them twice!