Texture Mapping

CS 465 Lecture 14

Texture mapping

- Objects have properties that vary across the surface

Texture Mapping

- So we make the shading parameters vary across the surface

Texture mapping

- Adds visual complexity; makes appealing images
Texture mapping

- Color is not the same everywhere on a surface
 - one solution: multiple primitives
- Want a function that assigns a color to each point
 - the surface is a 2D domain, so that is essentially an image
 - can represent using any image representation
 - raster texture images are very popular

A definition

Texture mapping: a technique of defining surface properties (especially shading parameters) in such a way that they vary as a function of position on the surface.

- This is very simple!
 - but it produces complex-looking effects

Examples

- Wood gym floor with smooth finish
 - diffuse color k_D varies with position
 - specular properties k_S, n are constant
- Glazed pot with finger prints
 - diffuse and specular colors k_D, k_S are constant
 - specular exponent n varies with position
- Adding dirt to painted surfaces
- Simulating stone, fabric, ...
 - in many cases textures are used to approximate effects of small-scale geometry
 - they look flat but are a lot better than nothing

Mapping textures to surfaces

- Usually the texture is an image (function of u, v)
 - the big question of texture mapping: where on the surface does the image go?
 - obvious only for a flat rectangle the same shape as the image
 - otherwise more interesting
- Note that 3D textures also exist
 - texture is a function of (u, v, w)
 - can just evaluate texture at 3D surface point
 - good for solid materials
 - often defined procedurally
Mapping textures to surfaces

• “Putting the image on the surface”
 – this means we need a function \(f \) that tells where each point on the image goes
 – this looks a lot like a parametric surface function
 – for parametric surfaces you get \(f \) for free

Texture coordinate functions

• Non-parametrically defined surfaces: more to do
 – can’t assign texture coordinates as we generate the surface
 – need to have the inverse of the function \(f \)
• Texture coordinate fn.
 \(\phi : S \rightarrow \mathbb{R}^2 \)
 – for a vtx. at \(p \) get texture at \(f(p) \)

Texture coordinate functions

• Mapping from \(S \) to \(D \) can be many-to-one
 – that is, every surface point gets only one color assigned
 – but it is OK (and in fact useful) for multiple surface points to be mapped to the same texture point
 • e.g. repeating tiles

• Define texture image as a function
 \(T : D \rightarrow C \)
 – where \(C \) is the set of colors for the diffuse component
• Diffuse color (for example) at point \(p \) is then
 \(k_D(p) = T(\phi(p)) \)
Examples of coordinate functions

- A rectangle
 - image can be mapped directly, unchanged

Examples of coordinate functions

- For a sphere: latitude-longitude coordinates
 - \(f \) maps point to its latitude and longitude

Examples of coordinate functions

- A parametric surface (e.g. spline patch)
 - surface parameterization gives mapping function directly
 (well, the inverse of the parameterization)

Examples of coordinate functions

- For non-parametric surfaces it is trickier
 - directly use world coordinates
 - need to project one out
Examples of coordinate functions

- For non-parametric surfaces it is trickier
 - directly use world coordinates
 - need to project one out

Examples of coordinate functions

- Triangles
 - specify \((u,v)\) for each vertex
 - define \((u,v)\) for interior by linear interpolation

Barycentric coordinates (will see again)

- A coordinate system for triangles (will see this again)
 - interior point as convex affine combination of vertices
 \[
 p = a + \beta(b - a) + \gamma(c - a)
 \]
 \[
 \alpha = 1 - \beta - \gamma
 \]
 \[
 p = \alpha a + \beta b + \gamma c
 \]
 \[
 \alpha + \beta + \gamma = 1
 \]
 - Geometric viewpoint: areas

Barycentric coordinates

- A coordinate system for triangles
 - geometric viewpoint: distance ratios perpendicular to edges

- Texture coordinate interpolation
 \[
 u = \alpha u_a + \beta u_b + \gamma u_c; \quad v = \alpha v_a + \beta v_b + \gamma v_c
 \]
Texture coordinates on meshes

- Texture coordinates become per-vertex data like vertex positions
 - can think of them as a second position: each vertex has a position in 3D space and in 2D texture space
- How to come up with vertex \((u,v)\)s?
 - use any or all of the methods just discussed
 - in practice this is how you implement those for curved surfaces approximated with triangles
 - use some kind of optimization
 - try to choose vertex \((u,v)\)s to result in a smooth, low distortion map