CS4620/5620: Lecture 30

Splines and Animation

Announcements

• 4621
 – Friday (Animation)

• HW 3 released tonight
Beziers curve
Recursive algorithm: Option 2

void DrawRecBezier (float eps) {
 if Linear (curve, eps)
 DrawLine (curve);
 else
 SubdivideCurve (curve, leftC, rightC);
 DrawRecBezier (leftC, eps);
 DrawRecBezier (rightC, eps);
}

Termination Criteria

• Test for linearity
 – distance between control points
 – distance of control points from line

\[d_0 < \varepsilon \]
\[d_1 < \varepsilon \]
B-splines

• We may want more continuity than C^1

• B-splines are a clean, flexible way of making long splines with arbitrary order of continuity

• Various ways to think of construction
 – a simple one is convolution

• An approximating spline

Deriving the B-Spline

• Approached from a different tack than Hermite-style constraints
 – Want a cubic spline; therefore 4 active control points
 – Want C^2 continuity
 – Turns out that is enough to determine everything
Efficient construction of any B-spline

• B-splines defined for all orders
 – order d: degree $d - 1$
 – order d: d points contribute to value
• One definition: Cox-deBoor recurrence

\[
b_1 = \begin{cases}
1 & 0 \leq u < 1 \\
0 & \text{otherwise}
\end{cases}
\]

\[
b_d = \frac{t}{d-1} b_{d-1}(t) + \frac{d-t}{d-1} b_{d-1}(t-1)
\]

B-spline construction, alternate view

• Recurrence
 – ramp up/down

• Convolution
 – smoothing of basis fn
 – smoothing of curve

\[\text{Graphs of } b_1(t), b_2(t), b_3(t), b_4(t), b_5(t)\]
Cubic B-spline matrix

\[p(t) = \begin{bmatrix} t^3 & t^2 & t \end{bmatrix} \cdot \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} p_{k-1} \\ p_k \\ p_{k+1} \\ p_{k+2} \end{bmatrix} \]

Cubic B-spline curves

- Treat points uniformly
- C^2 continuity
- \(C(t) = [(1-t)^3 P_{i-3} + (3t^3 - 6 t^2 + 4)P_{i-2} + (-3 t^3 + 3t^2 + 3t + 1) P_{i-1} + t^3 P_{i}] / 6 \)
- Notice blending functions still add to 1
Cubic B-spline basis

- B-spline from each 4-point sequence matches previous, next sequence with C^2 continuity!
- Treats all points uniformly
Rendering the spline-curve

• Given B-spline points \(d_{-1}, \ldots d_{L+1} \)
• Compute Bézier points \(b_0, \ldots b_{3L} \)
• Use De Casteljau algorithm to render

![Diagram showing the process of rendering a spline curve using De Casteljau algorithm.]

Equations and boundary conditions

• Equations
 • \(b_{3i} = (b_{3i-1} + b_{3i+1}) / 2 \)
 • \(b_{3i-1} = d_{i-1}/3 + 2d_i/3 \)
 • \(b_{3i-2} = 2d_{i-1}/3 + d_i/3 \)

• Boundary conditions
 • \(b_0 = d_{-1}, b_1 = d_0, b_2 = (d_0 + d_1)/2 \)
 • \(b_{3L} = d_{L+1}, b_{3L-1} = d_L, b_{3L-2} = (d_{L-1} + d_L)/2 \)
Converting spline representations

• All the splines we have seen so far are equivalent
 – all represented by geometry matrices
 \[p_S(t) = T(t)M_SP_S \]

 • where \(S \) represents the type of spline
 – therefore the control points may be transformed from one type to another using matrix multiplication
 \[P_1 = M_1^{-1}M_2P_2 \]
 \[p_1(t) = T(t)M_1(M_1^{-1}M_2P_2) = T(t)M_2P_2 = p_2(t) \]

Other types of B-splines

• Nonuniform B-splines
 – discontinuities not evenly spaced
 – allows control over continuity or interpolation at certain points
 – e.g. interpolate endpoints (commonly used case)
• Nonuniform Rational B-splines (NURBS)
 – ratios of nonuniform B-splines: \(x(t)/w(t), \ y(t)/w(t) \)
 – key properties:
 • invariance under perspective
 • ability to represent conic sections exactly
Why Splines?

• Advantages
 • Smooth curves: C^0, C^1, C^2 continuity
 • Intuitive editing
 • Smooth animation
 • Compact: represent complex curves simply
 • Convenient parametric representation
 • Point $p = (x,y) = (x(t), y(t))$

Surfaces

• Generalize by product of basis functions in 2 dimensions
Summary

- Splines
 - Smoothness, continuity (C0, C1, C2)
- Hermite
 - No convex hull property
 - 2 points and 2 tangents
- Bezier
 - Convex hull property
 - De Casteljau evaluation
 - Invariant to affine transformations
- B splines
 - Non-interpolation; i.e., approximating splines
 - C2 continuity

Animation
Animation

- Industry production process leading up to animation
- How animation works (very generally)
- Artistic process of animation
- Further topics in how it works

What is animation?

- Modeling = specifying shape
- Animation = specifying shape as a function of time
 - Just modeling done once per frame?
 - Need smooth, concerted movement
- Controlling shape = the technical problem
- Using shape controls = the artistic problem
Approaches to animation

• Straight ahead
 – Draw/animate one frame at a time
 – Can lead to spontaneity, but is hard to get exactly what you want

• Pose-to-pose
 – Top-down process:
 • Plan shots using storyboards
 • Plan key poses first
 • Finally fill in the in-between frames
Pose-to-pose animation planning

– First work out poses that are key to the story
– Next fill in animation in between

Keyframe animation

• Keyframing is the technique used for pose-to-pose animation
 – Head animator draws key poses—just enough to indicate what the motion is supposed to be
 – Assistants do “in-betweening” and draw the rest of the frames
 – In computer animation substitute “user” and “animation software”
 – Interpolation is the main operation
 – Pro: lots of artistic control
 – Con: Manually intensive
Principles of Animation

- Classic paper by Lasseter

Principles of Animation

- Timing
- Ease In and Out (or Slow In and Out)
- Arcs
- Anticipation
- Exaggeration
- Squash and Stretch
- Secondary Action
- Follow Through and Overlapping Action
- Straight Ahead Action and Pose-To-Pose Action
- Staging
- Appeal
- Personality
Animation principles: timing

- Speed of an action is crucial to the impression it makes
 - gives physical and emotional meaning
 - examples with same keyframes, different times:

60 fr: looking around
30 fr: “no”
5 fr: just been hit

Timing

- Indicates emotional state
- Eg. Look over left shoulder, then right

- On a scale of 1 to 10
 No in-between: snap
 1 in-between: hit with force
 2 in-betweens: nervous twitch
 3 in-betweens: dodging something
 4 in-betweens: giving an order
 6 in-betweens: sees something inviting
 9 in-betweens: thinking
 10 in-betweens: stretching
Animation principles: ease in/out

- Real objects do not start and stop suddenly
 - animation parameters shouldn’t either

- a little goes a long way (just a few frames acceleration or deceleration for “snappy” motions)

Animation principles: moving in arcs

- Real objects also don’t move in straight lines
 - generally curves are more graceful and realistic
Animation principles: anticipation

- Most actions are preceded by some kind of “wind-up”

![Animation principle: anticipation](image1)

Animation principles: exaggeration

- Animation is not about exactly modeling reality
- Exaggeration is very often used for emphasis

![Animation principle: exaggeration](image2)
Animation principles: squash & stretch

• Objects do not remain perfectly rigid as they move
• Adding stretch with motion and squash with impact:
 – models deformation of soft objects
Animation principles: follow through

- We've seen that objects don't start suddenly
- They also don't stop on a dime
 - Let arm complete motion
 - Let leg kick complete motion

Anim. principles: overlapping action

- Usually many actions are happening at once

- Have a plan
Principles of Animation

- Timing
- Ease In and Out (or Slow In and Out)
- Arcs
- Anticipation
- Exaggeration
- Squash and Stretch
- Follow Through and Overlapping Action
- Staging
- Appeal
- Personality

Animation principles: staging

- Want to produce clear, good-looking 2D images
- Attract attention to key character/actor
 - need good camera angles, set design, and character positions
 - rim lighting
Principles at work: weight

Computer-generated motion

- Interesting aside: many principles of character animation follow indirectly from physics
- Anticipation, follow-through, and many other effects can be produced by simply minimizing physical energy
- Seminal paper: “Spacetime Constraints” by Witkin and Kass in SIGGRAPH 1988