CS4620/5620: Lecture 16

Programmable Shading and Meshes

Announcements

• Prelim next Thursday
 – In the evening, closed book
 – Including material of this week
Putting it together

- Usually include ambient, diffuse, Phong in one model

\[L = L_a + L_d + L_s \]
\[= k_a I_a + k_d I \max(0, \mathbf{n} \cdot \mathbf{l}) + k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^n \]

- The final result is the sum over many lights

\[L = L_a + \sum_{i=1}^{N} \left[(L_d)_i + (L_s)_i \right] \]
\[L = k_a I_a + \sum_{i=1}^{N} \left[k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l}_i) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h}_i)^n \right] \]
Flat shading

- Shade using the real normal of the triangle
- Leads to constant shading and faceted appearance
 - truest view of the mesh geometry

Pipeline for flat shading

- Vertex stage (input: position / vtx; color and normal / tri)
 - transform position and normal (object to eye space)
 - compute shaded color per triangle using normal
 - transform position (eye to screen space)
- Rasterizer
 - interpolated parameters: z' (screen z)
 - pass through color
- Fragment stage (output: color, z')
 - write to color planes only if interpolated $z' <$ current z'
Local vs. infinite viewer, light

- Phong illumination requires geometric information:
 - light vector (function of position)
 - eye vector (function of position)
 - surface normal (from application)
- Light and eye vectors change
 - need to be computed (and normalized) for each face
Local vs. infinite viewer, light

- Look at case when eye or light is far away:
 - distant light source: nearly parallel illumination
 - distant eye point: nearly orthographic projection
 - in both cases, eye or light vector changes very little

- Optimization: approximate eye and/or light as infinitely far away

Directional light

- Directional (infinitely distant) light source
 - light vector always points in the same direction
 - often specified by $[x \ y \ z \ 0]$
 - many pipelines are faster if you use directional lights
Infinite viewer

- Orthographic camera
 - projection direction is constant
- “Infinite viewer”
 - even with perspective, can approximate eye vector using the image plane normal
 - can produce weirdness for wide-angle views
 - Blinn-Phong: light, eye, half vectors all constant!

Gouraud interpolation

- Often we’re trying to draw smooth surfaces, so facets are an artifact
 - compute colors at vertices using vertex normals
 - interpolate colors across triangles
 - “Gouraud shading”
 - **Gouraud interpolation**
 - “Smooth shading”
 - **Phong interpolation**
Aside: naming

• Historical
 – Gouraud interpolation, Phong interpolation
 • Different types of smooth shading
 – Phong shading
 • Actually Phong reflectance model (diffuse, specular)

• Bad naming
 – Gouraud shading: not really shading
 – Phong shading: ambiguous

• Correct
 – Gouraud interpolation/shading, per-pixel shading

Pipeline for Gouraud interpolation

• Vertex stage (input: position, color, and normal / vtx)
 – transform position and normal (object to eye space)
 – compute shaded color per vertex
 – transform position (eye to screen space)

• Rasterizer
 – interpolated parameters: z' (screen z); r, g, b color

• Fragment stage (output: color, z')
 – write to color planes only if interpolated $z' <$ current z'
Vertex normals

- Need normals at vertices to compute Gouraud interpolation
- Best to get vtx. normals from the underlying geometry
 - e.g. spheres example
- Otherwise have to infer vtx. normals from triangles
 - simple scheme: average surrounding face normals

\[N_v = \frac{\sum_i N_i}{\| \sum_i N_i \|} \]
Non-diffuse Gouraud interpolation

- Can apply Gouraud interpolation to any illumination model
 - it’s just an interpolation method
- Results are not so good with fast-varying models like specular ones
 - problems with any highlights smaller than a triangle

Per-pixel (Phong) interpolation

- Get higher quality by interpolating the normal
 - just as easy as interpolating the color
 - but now we are evaluating the illumination model per pixel rather than per vertex (and normalizing the normal first)
 - in pipeline, this means we are moving illumination from the vertex processing stage to the fragment processing stage
Phong (per-pixel) interpolation

- Bottom line: produces much better highlights

Pipeline for per-pixel (Phong) interpolation

- Vertex stage (input: position, color, and normal / vtx)
 - transform position and normal (object to eye space)
 - transform position (eye to screen space)
 - pass through color
- Rasterizer
 - interpolated parameters: \(z' \) (screen \(z \)); \(r, g, b \) color; \(x, y, z \) normal
- Fragment stage (output: color, \(z' \))
 - compute shading using interpolated color and normal
 - write to color planes only if interpolated \(z' \) < current \(z' \)
Result of per-pixel shading pipeline

Meshes
Aspects of meshes

• in many cases we care about the mesh being able to bound a region of space nicely
• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
• two completely separate issues:
 – topology: how the triangles are connected (ignoring the positions entirely)
 – geometry: where the triangles are in 3D space

Topology/geometry examples

• same geometry, different mesh topology:
 ![Topologies](image1)

• same mesh topology, different geometry:
 ![Geometries](image2)
Notation

- \(n_T = \text{#tris}; n_V = \text{#verts}; n_E = \text{#edges} \)
- Euler: \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer

![Simple convex polyhedra](http://en.wikipedia.org/wiki/Euler_characteristic)

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>Vertices</th>
<th>Edges</th>
<th>Faces</th>
<th>Euler characteristic: (V - E + F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahedron</td>
<td></td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Hexahedron or cube</td>
<td></td>
<td>8</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Octahedron</td>
<td></td>
<td>6</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Dodecahedron</td>
<td></td>
<td>20</td>
<td>30</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Icosahedron</td>
<td></td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Examples of simple convex polyhedra

Buckyball

\[V = 60 \]
\[E = 90 \]
\[F = 32 \text{ (12 pentagons + 20 hexagons)} \]
\[V - E + F = 60 - 90 + 32 = 2 \]

Examples (nonconvex polyhedra!)

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>Vertices</th>
<th>Edges</th>
<th>Faces</th>
<th>Euler characteristic: (V - E + F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahemihexahedron</td>
<td></td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Octahemioctahedron</td>
<td></td>
<td>12</td>
<td>24</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cubohemioctahedron</td>
<td></td>
<td>12</td>
<td>24</td>
<td>10</td>
<td>-2</td>
</tr>
<tr>
<td>Great icosahedron</td>
<td></td>
<td>12</td>
<td>30</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

http://en.wikipedia.org/wiki/Euler_characteristic
Euler’s Formula

- $n_V = \#\text{verts}; \ n_E = \#\text{edges}; \ n_F = \#\text{faces}$
- Euler’s Formula for a convex polyhedron:
 \[n_V - n_E + n_F = 2 \]
- Other meshes often sum to small integer
 - argument for implication that $n_V:n_E:n_F$ is about 1:3:2

Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes
Separate triangles

• array of triples of points
 – float[n][3][3]: about 72 bytes per vertex
 • 2 triangles per vertex (on average)
 • 3 vertices per triangle
 • 3 coordinates per vertex
 • 4 bytes per coordinate (float)

• various problems
 – wastes space (each vertex stored 6 times)
 – cracks due to roundoff
 – difficulty of finding neighbors at all