Announcements

• PA 1 due Wed
Rasterization

- First job: enumerate the pixels covered by a primitive
 - simple, aliased definition: pixels whose centers fall inside

- Second job: interpolate values across the primitive
 - e.g. colors computed at vertices
 - e.g. normals at vertices
 - will see applications later on

Line rasterization

- Can be done incrementally, and therefore very efficiently

- Can also be done conservatively
 - Visit any likely pixel
 - Do a test for it and decide if you output or not
Rasterizing triangles

• The most common case in most applications
 – with good antialiasing can be the only case
 – some systems render a line as two skinny triangles
• Triangle represented by three vertices
• Simple way to think of algorithm follows the pixel-walk interpretation of line rasterization
 – walk from pixel to pixel over (at least) the polygon’s area
 – evaluate linear functions as you go
 – use those functions to decide which pixels are inside

Rasterizing triangles

• Input:
 – three 2D points (the triangle’s vertices in pixel space)
 • \((x_0, y_0); (x_1, y_1); (x_2, y_2)\)
 – parameter values at each vertex
 • \(q_{00}, \ldots, q_{0n}; q_{10}, \ldots, q_{1n}; q_{20}, \ldots, q_{2n}\)
• Output: a list of fragments, each with
 – the integer pixel coordinates \((x, y)\)
 – interpolated parameter values \(q_0, \ldots, q_n\)
Rasterizing triangles

Incremental linear evaluation

• A linear (affine, really) function on the plane is:
 \[q(x, y) = c_x x + c_y y + c_k \]

• Linear functions are efficient to evaluate on a grid:
 \[q(x + 1, y) = c_x (x + 1) + c_y y + c_k = q(x, y) + c_x \]
 \[q(x, y + 1) = c_x x + c_y (y + 1) + c_k = q(x, y) + c_y \]
Incremental linear evaluation

\[
\text{linEval}(x_{\text{low}}, x_{\text{h}}, y_{\text{low}}, y_{\text{h}}, c_x, c_y, c_k) \{ \\
\quad // \text{setup} \\
\quad \text{qRow} = c_x \times x_{\text{low}} + c_y \times y_{\text{low}} + c_k; \\
\quad // \text{traversal} \\
\quad \text{for } y = y_{\text{low}} \text{ to } y_{\text{h}} \{ \\
\quad \quad \text{qPix} = \text{qRow}; \\
\quad \quad \text{for } x = x_{\text{low}} \text{ to } x_{\text{h}} \{ \\
\quad \quad \quad \text{output}(x, y, \text{qPix}); \\
\quad \quad \quad \text{qPix} += c_x; \\
\quad \quad \} \\
\quad \text{qRow} += c_y; \\
\quad \}
\]

\[
\begin{align*}
&c_x = .005; c_y = .005; c_k = 0 \\
&(\text{image size } 100 \times 100)
\end{align*}
\]

Rasterizing triangles

- **Approach**
 1. evaluation of linear functions on pixel grid
 2. functions defined by parameter values at vertices
Defining parameter functions

- To interpolate parameters across a triangle we need to find the c_x, c_y, and c_k that define the (unique) linear function that matches the given values at all 3 vertices:
 - this is 3 constraints on 3 unknown coefficients:

 \begin{align*}
 c_x x_0 + c_y y_0 + c_k &= q_0 \\
 c_x x_1 + c_y y_1 + c_k &= q_1 \\
 c_x x_2 + c_y y_2 + c_k &= q_2
 \end{align*}

 (each states that the function agrees with the given value at one vertex)

- leading to a 3x3 matrix equation for the coefficients:

\[
\begin{bmatrix}
 x_0 & y_0 & 1 \\
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 c_x \\
 c_y \\
 c_k
\end{bmatrix}
=
\begin{bmatrix}
 q_0 \\
 q_1 \\
 q_2
\end{bmatrix}
\]

(singular iff triangle is degenerate)

- More efficient version: shift origin to (x_0, y_0)

\[
q(x, y) = c_x (x - x_0) + c_y (y - y_0) + q_0
\]

\[
q(x_1, y_1) = c_x (x_1 - x_0) + c_y (y_1 - y_0) + q_0 = q_1
\]

\[
q(x_2, y_2) = c_x (x_2 - x_0) + c_y (y_2 - y_0) + q_0 = q_2
\]

- now this is a 2x2 linear system (since q_0 falls out):

\[
\begin{bmatrix}
 (x_1 - x_0) & (y_1 - y_0) \\
 (x_2 - x_0) & (y_2 - y_0)
\end{bmatrix}
\begin{bmatrix}
 c_x \\
 c_y
\end{bmatrix}
=
\begin{bmatrix}
 q_1 - q_0 \\
 q_2 - q_0
\end{bmatrix}
\]

- solve using Cramer’s rule (see Shirley):

\[
c_x = \frac{(\Delta q_1 \Delta y_2 - \Delta q_2 \Delta y_1)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
\]

\[
c_y = \frac{(\Delta q_2 \Delta x_1 - \Delta q_1 \Delta x_2)}{(\Delta x_1 \Delta y_2 - \Delta x_2 \Delta y_1)}
\]
Defining parameter functions

```c
linInterp(xl, xh, yl, yh, x0, y0, q0,
         x1, y1, q1, x2, y2, q2) {

    // setup
    det = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0);
    cx = ((q1-q0)*(y2-y0) - (q2-q0)*(y1-y0)) / det;
    cy = ((q2-q0)*(x1-x0) - (q1-q0)*(x2-x0)) / det;
    qRow = cx*(xlow-x0) + cy*(ylow-y0) + q0;

    // traversal (same as before)
    for y = ylow to yh {
        qPix = qRow;
        for x = xlow to xh {
            output(x, y, qPix);
            qPix += cx;
        }
        qRow += cy;
    }
}
```

Interpolating several parameters

```c
linInterp(xl, xh, yl, yh, n, x0, y0, q0[]),
         x1, y1, q1[], x2, y2, q2[]) {

    // setup
    for k = 0 to n-1
        // compute cx[k], cy[k], qRow[k]
        // from q0[k], q1[k], q2[k]

    // traversal
    for y = yl to yh {
        for k = 1 to n, qPix[k] = qRow[k];
        for x = xl to xh {
            output(x, y, qPix);
            for k = 1 to n, qPix[k] += cx[k];
        }
        for k = 1 to n, qRow[k] += cy[k];
    }
}
```
Rasterizing triangles

- **Summary**
 1. Evaluation of linear functions on pixel grid
 2. Functions defined by parameter values at vertices
 3. Using extra parameters to determine fragment set

Clipping to the triangle

- Use barycentric coordinates

- A coordinate system for triangles

- 3 values: determine if you are inside the triangle
Barycentric coordinates

- A coordinate system for triangles

\[p = a + \beta (b - a) + \gamma (c - a) \]

\[p = a + \beta (b - a) + \gamma (c - a) \]

\[\alpha = 1 - \beta - \gamma \]

\[p = \alpha a + \beta b + \gamma c \]

\[\alpha + \beta + \gamma = 1 \]
Barycentric coordinates

• Basis: a coordinate system for triangles

\[\alpha = 1 - \beta - \gamma \]
\[p = a + \beta(b - a) + \gamma(c - a) \]

– in this view, the triangle interior test is just

\[\beta > 0; \quad \gamma > 0; \quad \beta + \gamma < 1 \]
\[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]

Barycentric coordinates

• A coordinate system for triangles
 – geometric viewpoint (areas):

\[\beta = \frac{A_b}{A_{tot}} \]

• Triangle interior test:

\[\alpha > 0; \quad \beta > 0; \quad \gamma > 0 \]
Triangle Areas

• Use this equation to compute barycentric coordinates

\[
\text{area} = \frac{1}{2} \begin{vmatrix}
 x_b - x_a & x_c - x_a \\
 y_b - y_a & y_c - y_a \\
\end{vmatrix}
\]

\[
= \frac{1}{2} (x_a y_b + x_b y_c + x_c y_a - x_a y_c - x_b y_a - x_c y_b).
\]

• What is beta with this equation?

Clipping to the triangle

• Interpolate three barycentric coordinates across the plane
 – each barycentric coord is 1 at one vert. and 0 at the other two
 – lies between 0 and 1 inside the triangle

• Output fragments only when all three are > 0.
Pixel-walk (Pineda) rasterization

- Conservatively visit a superset of the pixels you want
- Interpolate linear functions
- Use those functions to determine when to emit a fragment

Rasterizing triangles

- Exercise caution with rounding and arbitrary decisions
 - need to visit these pixels once
 - but it’s important not to visit them twice!