CS4620/5620: Pipeline and Transformations

Professor: Kavita Bala

Course mechanics

Web http://www.cs.cornell.edu/Courses/cs4620

Teaching Assistants (2 Ph.D., 2 ugrad, 1 nice guy)
 * John deCorato
 * Pramook Khungurn
 * Sean Ryan
 * Dan Schroeder
 * Nick Savva?

Piazza
Please sign up
Workload

- CS 4620/5620
 - 3 Homeworks
 - 4 programming assignments
 - No penalty for 1 late homework, then 10% per day

- CS 4621/5621
 - 3-4 programming assignments

- 2 prelims, no finals
 - Schedule will be updated

Course mechanics

Web http://www.cs.cornell.edu/Courses/cs4620

Mailing lists, ... etc. all on the web page

Practicum
- Not this Friday
- Will send out mail when a practicum is planned
Topics

- Graphics pipeline
- Geometric transformations
- Modeling in 2D and 3D
- Rendering 3D scenes
 - GPU and ray tracing
- Animation
- Images and image processing
 (sampling and reconstruction)
- Color science

Graphics pipeline

- rasterization
- interpolation
- z-buffer
- vertex and fragment ops
- texture mapping
Geometric transformations

- affine transforms
- perspective transforms
- viewing

rotate, then translate

translate, then rotate

Modeling

- splines
- parametric surfaces
- triangle meshes
Rendering

- ray tracing
- shading & shadows
- transparency

Ray tracing

viewer (eye) -- viewing ray --> visible point

light source --> illumination

objects in scene
Object-order vs. Image-order

- Object-order

 for each triangle t {
 find pixels covered by t
 \(c(x,y) = \text{shade (visible point)} \)
 }

- Image-order

 for each pixel \(p(x,y) \) {
 intersect ray through \(p \) with scene
 \(c(x,y) = \text{shade (visible point)} \)
 }

- Hardware pipeline

- Ray tracers

Animation

- key frame animation
- subdivision surfaces
- physics-based animation
- particle systems
Images

- What is an image?
- Compositing
- Resampling

Graphics Pipeline

APPLICATION

COMMAND STREAM

GEOMETRY PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY
Math review

• Read:
 – Tiger, Chapter 2, 5: Misc Math, Linear Algebra
 – Gortler, Chapter 1, 2: Linear

• Vectors and points
• Vector operations
 – addition
 – scalar product
• More products
 – dot product
 – cross product
• Bases and orthogonality

• Vectors and points
 – P = (x, y, z)
 – V = (a, b, c)
• Vector operations
 – addition
 – scalar product
• Point operations
 – subtraction
Math review

• Vectors and points
 – P = (x, y, z)
 – V = (a, b, c)

• More products
 – dot product
 • geometric interpretation
 – cross product
 • geometric interpretation

Math review

• Bases and orthogonality

• Basis: 3 orthonormal axes
 – Unit length
 – Mutually perpendicular

• Represent a point/vector in the basis
Math review

- Linear transformations
- Matrices
 - Matrix-vector multiplication
 - Matrix-matrix multiplication
- Geometry of curves in 2D
 - Implicit representation
 - Explicit representation

Implicit representations

- Equation to tell whether v is on the curve
 \[\{ v \mid f(v) = 0 \} \]
- Example: 2D line (orthogonal to u, distance k from 0)
 \[\{ v \mid v \cdot u + k = 0 \} \]
- Example: circle (center p, radius r)
 \[\{ v \mid (v - p) \cdot (v - p) - r^2 = 0 \} \]
Explicit representations

• Also called parametric
• Equation to map domain into plane
 \(\{ f(t) \mid t \in D \} \)
• Example: line (passes through \(p \), parallel to \(u \))
 \(\{ p + tu \mid t \in \mathbb{R} \} \)
• Example: circle (center \(p \), radius \(r \))
 \(\{ p + r[\cos t \ \sin t]^T \mid t \in [0, 2\pi) \} \)
• Like tracing out the path of a particle over time
• Variable \(t \) is the “parameter”

Transforming geometry

• Move a subset of the plane using a mapping from the plane to itself
 \(\cdot S \rightarrow \{ T(v) \mid v \in S \} \)
Transforming geometry

- Move a subset of the plane using a mapping from the plane to itself
 \[S \rightarrow \{ T(v) \mid v \in S \} \]
- Parametric representation:
 \[\{ f(t) \mid t \in D \} \rightarrow \{ T(f(t)) \mid t \in D \} \]
- Implicit representation:
 \[\{ v \mid f(v) = 0 \} \rightarrow \{ T(v) \mid f(v) = 0 \} = \{ v \mid f(T^{-1}(v)) = 0 \} \]

Translation

- Simplest transformation: \[T(v) = v + u \]
- Inverse: \[T^{-1}(v) = v - u \]
- Example of transforming circle
Linear transformations using matrices

• One way to define a transformation is by matrix multiplication:
 \[T(v) = Mv \]

• Such transformations are linear, which is to say:
 \[T(au + v) = aT(u) + T(v) \]
 (and in fact all linear transformations can be written this way)
Geometry of 2D linear trans.

- 2x2 matrices have simple geometric interpretations
 - uniform scale
 - non-uniform scale
 - reflection
 - shear
 - rotation

Linear transformation gallery

- Uniform scale
 \[
 \begin{bmatrix}
 s & 0 \\
 0 & s
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 sx \\
 sy
 \end{bmatrix}
 \]

\[
\begin{bmatrix}
 1.5 & 0 \\
 0 & 1.5
\end{bmatrix}
\]

\[R\] to \[R\]
Linear transformation gallery

- Nonuniform scale

\[
\begin{bmatrix}
s_x & 0 \\
0 & s_y
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
s_xx \\
leon
\end{bmatrix}
=
\begin{bmatrix}
1.5 & 0 \\
0 & 0.8
\end{bmatrix}
\]

Linear transformation gallery

- Reflection
 - can consider it a special case of nonuniform scale

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\]
Linear transformation gallery

• Shear
\[
\begin{bmatrix}
1 & a \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
x + ay \\
y \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
1 & 0.5 \\
0 & 1 \\
\end{bmatrix}
\]

Cornell CS4620/5620 Fall 2012 • Lecture 2

Linear transformation gallery

• Rotation
\[
\begin{bmatrix}
cos \theta & -sin \theta \\
sin \theta & cos \theta \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
x \cos \theta - y \sin \theta \\
x \sin \theta + y \cos \theta \\
\end{bmatrix}
\]
\[
\begin{bmatrix}
0.866 & -.05 \\
0.5 & 0.866 \\
\end{bmatrix}
\]

Cornell CS4620/5620 Fall 2012 • Lecture 2